
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133157512
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133157512
https://plusone.google.com/share?url=http://www.informit.com/title/9780133157512
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133157512
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133157512/Free-Sample-Chapter

Learning iOS
Design

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning iOS
Design

A Hands-On Guide for
Programmers and Designers

William Van Hecke

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Van Hecke, William.
 Learning iOS design : a hands-on guide for programmers and designers /
William Van Hecke.
 pages cm
 Includes index.
 ISBN-13: 978-0-321-88749-8 (pbk. : alk. paper)
 ISBN-10: 0-321-88749-2 (pbk. : alk.paper)
 1. iOS (Electronic resource) 2. Application software—Development. 3. iPad
(Computer)—Programming. 4. iPhone (Smartphone)—Programming. I. Title.
 QA76.774.I67V36 2013
 004.167—dc23
 2013010043

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or
you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88749-8
ISBN-10: 0-321-88749-2
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, June 2013

Editor-in-Chief
Mark L. Taub

Senior Acquisitions
Editor
Trina MacDonald

Development
Editor
Sheri Cain

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Project Editor
Anna Popick

Copy Editor
Betsy Hardinger

Indexer
Jack Lewis

Proofreader
Anna Popick

Technical
Reviewers
Jon Bell
Jim Correia
Lukas Mathis

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Rob Mauhar

❖

To Buzz and CeeCee; Touichi and Risako

❖

This page intentionally left blank

Contents at a Glance

 Foreword xix

 Preface xxi

 Acknowledgments xxix

 About the Author xxxi

I Turning Ideas into Software 1

 1 The Outlines 3

 2 The Sketches 15

 3 Getting Familiar with iOS 31

 4 The Wireframes 55

 5 The Mockups 81

 6 The Prototypes 111

 7 Going Cross-Platform 127

II Principles 143

 8 The Graceful Interface 145

 9 The Gracious Interface 167

 10 The Whole Experience 195

III Finding Equilibrium 221

 11 Focused and Versatile 223

 12 Quiet and Forthcoming 237

 13 Friction and Guidance 255

 14 Consistency and Specialization 271

 15 Rich and Plain 285

 Index 303

This page intentionally left blank

Contents

 Foreword xix

 Preface xxi

 Acknowledgments xxix

 About the Author xxxi

I Turning Ideas into Software 1

 1 The Outlines 3

The Process: Nonlinear but Orderly 3

Writing about Software 4

The Mental Sweep 6

More Inputs to Outlining 7

Outlining Requirements 8

Introducing SnackLog 8

Antirequirements 9

Define a Platform 10

Listing Ramifications 11

iOS and Featurefulness 11

Reducing Problems 12

Outlining Architecture 13

Your Outline Is Your To-Do List 14

Summary 14

Exercises 14

 2 The Sketches 15

Thinking by Drawing 15

Design Happens in Conversations 16

Tools for Sketching 18

Sketches Are Sketchy 19

When to Sketch 20

Using Precedents 21

Playing Devil’s Advocate 22

Sketching Interfaces 22

Sketching Interactions 24

Contentsx

Sketching Workflows 26

Summary 29

Exercises 29

 3 Getting Familiar with iOS 31

Navigation: Screen to Screen 31

Navigation Controller 31

Split View 34

Tabs 35

Segmented-Controls-as-Tabs 36

Multiple Personalities 36

Modal View 37

Popover 39

Custom Navigation 39

Advice on the Standard Elements 41

Bars 41

Content Views 43

Alerts 46

Action Sheets 47

Standard Controls 48

Custom Controls 52

Summary 53

Exercises 53

 4 The Wireframes 55

Thinking in Screens 56

Thinking in Points 57

Optical Measurements 57

Measuring Text Optically 59

Measuring Images and Controls Optically 60

Techniques for Measuring 60

Tools for Wireframing 61

Principles of Layout 63

Unity Is the Goal 63

Visual Weight 64

Similarity and Distinction 65

Proximity and Distance 66

Contents xi

Alignment 66

Rhythm 68

Margin and Padding 70

Balance 71

Understatement 71

Typography 72

Layout: A Place for Everything… 74

Content and Controls 74

Thinking in Layers 74

Controls in Content Areas 75

Information Density 75

Dimensionality 76

Orientation on iPhone 77

Orientation on iPad 78

The Worst-Case Height-Compression Scenario 78

Summary 79

Exercises 80

 5 The Mockups 81

When to Mock Up 81

Styling: The Apparent Design Discipline 82

Rendering 83

Communication 84

Tastefulness 84

Mockup Tools 85

Color: Thinking in HSB 86

Good Old RGB 86

Introducing HSB 87

Get Serious about Value 88

Contrast: Thinking in Figure/Ground Relationships 89

Styling for Good Contrast and Visual Weight 89

Good Backgrounds 92

Transparency 93

1+1 = 3 94

Presenting Image Content 95

Evaluating Contrast: Posterize It 95

Contrast Examples 98

Contentsxii

Table Cells 98

Action Sheet Buttons 99

iBooks Page Metadata 99

Birth of a Button 100

Step 0: Set Up the Canvas 100

Step 1: Create a Shape Layer 101

Step 2: Choose a Fill Color 102

Step 3: Apply a Gradient 102

Step 4: Add a Stroke 103

Step 5: Add a Bevel 104

Step 6: Add Texture 105

Step 7: Add an Underhighlight 105

Step 8: Add Contents 106

Onward 106

Mockup Assembly 106

Resizable Images 107

Retina Resources 107

Designing for Layers 108

Summary 109

Exercises 109

 6 The Prototypes 111

Test on the Device 111

Kinds of Prototypes 112

Paper Prototypes 112

Wizard of Oz Prototypes 114

Motion Sketches 115

Preemptive Demo Videos 117

Interactive Prototypes 118

Proof-of-Concept Software 121

Why Do Usability Testing? 123

How to Do Usability Testing 124

Summary 126

Exercises 126

 7 Going Cross-Platform 127

Platform Catalog 127

Standalone, Mini, and Companion Apps 129

Contents xiii

Start from Scratch 130

Back to the Outlines 130

Case Study: Apple Mail 131

Mac OS X Leopard 131

iPhone 134

iPad 138

Back to the Mac 140

Summary 141

Exercises 142

II Principles 143

 8 The Graceful Interface 145

Suspension of Disbelief 145

The Moment of Uncertainty 146

Instantaneous Feedback 147

Gracefulness through Layout 149

Six Reliable Gestures 151

The Sandwich Problem 153

Exotic Gestures as Shortcuts 154

Realistic Gestures 154

Hysteresis 155

Thresholds 157

Generous Taps 158

Meaningful Animation 161

Making SnackLog Graceful 163

Summary 164

Exercises 164

 9 The Gracious Interface 167

Denotation and Connotation 167

Cues 168

Imagery 171

Text 172

Writing: The Secret Design Discipline 174

Redundant Messages 176

Communication Breakdown 176

Guidance at the Point of Need 177

Contentsxiv

Visible Status 178

Contextual Status 179

Invisible Status 180

Adaptation 180

Learning 182

Resourcefulness 182

The Sense of Adventure 183

Capability 184

Defensive Design 185

Forgiveness 187

Undo 187

Manual Undo 189

Confirmation 190

Making SnackLog Gracious 191

Summary 193

Exercises 193

 10 The Whole Experience 195

Serve the Soul 197

Conveying Capability 198

The Name 199

The Icon 199

Launch Images 202

The App Store Listing 202

The Price 205

Documentation 206

Comprehensive Documentation 206

Problem-Solving Documentation 207

Tutorials 208

Release Notes 209

Characteristics of Good Documentation 210

Support 211

Localization 211

Accessibility 213

VoiceOver 214

AssistiveTouch 214

Ethos 215

Contents xv

Respect 215

Respect for Time and Attention 215

Respect for Data 216

Speaking of Betrayals of Trust… 216

Summary 219

Exercises 219

III Finding Equilibrium 221

 11 Focused and Versatile 223

Debunking “Simple” and “Complex” 223

The Focused Design 224

Focused Apps Are About Real-World Goals 225

iOS Loves Focus 225

Massacre Features 225

Consolidate Functionality 226

Save It for Later 227

Scaling Back 227

Focusing SnackLog: Labeling 228

Scaling Back on Labeling 230

The Versatile Design 230

Versatile Apps: Bring Your Own Goals 231

iOS Loves Versatility 231

When to Go Versatile 233

How to Go Versatile 233

Triangulation 233

Pattern Recognition 235

Finding the Boundaries 235

Summary 236

Exercises 236

 12 Quiet and Forthcoming 237

Adjacent in Space 238

Stacked in Time 239

Progressive Disclosure 240

Group by Meaning, Arrange by Importance 242

Promotion and Demotion 243

Contentsxvi

Splitting the Difference 246

iOS Loves Context 246

Hide, Don’t Disable 248

Disappear 248

Taps Are Cheap 250

Loud and Clear 250

Making SnackLog Quiet 251

Making SnackLog Forthcoming 252

Summary 253

Exercises 253

 13 Friction and Guidance 255

The Difficulty Curve 255

Experience Weight 257

Why Add Friction? 257

How to Add Friction 258

Unintended Friction 259

Don’t Expose Underlying Mechanisms 261

Streamline Input 261

Guidance 262

Zero Options 262

One Option 263

Guidance among More Options 264

Sensible Defaults 266

The Blank Slate 267

Templates 268

Presets 268

Summary 270

Exercises 270

 14 Consistency and Specialization 271

How It All Works Out 271

Getting the Most Out of the HIG 272

The Consistent Design 273

Precedents, Motifs, Patterns, Shorthands 275

Avoiding Cargo Cult Design 277

Contents xvii

The Specialized Design 278

Harmless Distinctiveness 279

Conscientious Divergence 279

One Free Novel Interaction 280

Novelty Is Hard 282

Summary 283

Exercises 284

 15 Rich and Plain 285

Color versus Monochrome 286

Using Hue 286

Using Saturation 288

Using Brightness 289

Depth versus Flatness 290

Lighting 291

Extremes of Flatness and Depth 294

Realism versus Digitality 296

Texture and Tactility 297

Metaphor 297

Ornamentation 298

Simulation 299

Take It Easy 301

Summary 301

Exercises 302

 Index 303

This page intentionally left blank

Foreword

When Apple introduced Mac OS X, Mac users’ feelings were ambivalent. Sure, this
looked like a fantastic operating system, but a huge part of what made the Mac unique
was its software. Photoshop, Illustrator, Claris Works, MacPaint—these were the rea-
sons we used Macs. And with Mac OS X, all of these applications effectively stopped
working. There were few native applications for Mac OS X, and fewer still that
weren’t horrible.

There was, however, one company that consistently developed fantastic software
for Mac OS X right from the start. And they kept doing it. For the last decade, The
Omni Group has been a sure bet for quality products. Applications like OmniGraff le
combine ease of use and sheer power in a way that is unique, yet feels completely
natural. On the one hand, these applications are incredibly accessible. It takes very
little to create fantastic output. On the other hand, they have great depth. Recently,
the Omni Group has expanded their reach to iOS, and they’ve done something almost
nobody else outside of Apple has achieved: they’ve brought their applications to the
iPad in a way that makes them feel native to these portable touchscreen devices, but
doesn’t diminish their power and depth.

I’m probably not the only designer who has more than once looked at applications
like OmniOutliner, OmniGraff le, or the somewhat exorbitantly named OmniGraph-
Sketcher and wondered to themselves: How do they do it? How do these people con-
sistently create software that seems to effortlessly present incredibly powerful features
in a way that is easily accessible, and a pleasure to use? And even more puzzling, how
do they manage to achieve this feat on iOS, a platform famous for its abundance of
shallow, poorly designed, one-trick-pony, cash-grab apps?

Well, today’s your lucky day, because you’re holding the answer to this question in
your hands. My friend Bill, who wrote this book, happens to be Omni’s User Experi-
ence Lead. And he’s lifting his kilt, just for you.

I first consciously heard of Bill when he became Internet-famous for talking about
Omni’s 1:1 replicas of iPads made from wood, cardboard, Plexiglas, and 3-D-printed
parts. Who would want to make 1:1 replicas of iPads? Well, Apple had announced
the iPad, but had not yet started shipping it. Having already started designing apps for
the iPad, Bill’s team needed to get an idea for how these apps would feel on an actual
device. At this point, less dedicated people would just postpone the whole thing for a
few months. But not Bill’s team. They went ahead and made their own iPads.

Most UX designers eventually manage to come up with a design that works well.
It’s this kind of relentless dedication to detail, this kind of work ethic, though, that is

Forewordxx

the difference between a designer who can come up with a good design, and one who
will come up with a mind-blowingly awesome design.

But there’s something else that makes Bill unique among his peers. Any designer
will tell you that their goal is to make the product they’re working on beautiful and
easy to use and efficient and pleasant. But Bill goes one step further. His goal isn’t just
to make apps user-friendly, but to touch the user’s soul, to help people make more
beautiful things, be more successful, and be happier. In one of his presentations, he
recounts how one man converted his classic VW Beetle into an electric car with the
help of OmniGraff le. To Bill, that’s the ultimate goal. Software design isn’t just about
making an application easy to use, it’s about making the application have a positive
impact on people’s lives. It’s about helping people be better.

This book contains everything you need to know to create awesome, life-altering
applications, just like Omni’s. While it’s targeted at iOS designers, you’re going to
learn a lot from reading this book regardless of the platform you design for. I pride
myself on knowing a lot about design, but when reading this book, I probably didn’t
encounter a single page that didn’t offer at least one interesting idea, new concept, or
clever design technique. From learning how to make your application more forgiving
to a section on how pricing inf luences how people perceive your app (yep, its price is
part of the app’s design), you’re in for a treat.

Even better, this book doesn’t just offer invaluable content that will forever change
the way you design applications, it’s also written in a way that prevents you from put-
ting it down. So grab a hot cup of cocoa, put on your favorite music, and settle down
into your most comfortable chair, my friend, because you’ll be sitting here, staring at
this book, for quite a while.

Enjoy it.

—Lukas Mathis, ignorethecode.net; author of Designed for Use: Create Usable Interfaces
for Applications and the Web (Pragmatic Bookshelf, 2011)
March 2013

Preface

Hello
It took a while for the world to notice, but design really matters.

A perfect story of the power of design can be found by traveling back to April 2007
to eavesdrop on a chat with Microsoft CEO Steve Ballmer. Apple’s Steve Jobs had
announced the iPhone that January, and everyone had had a good while to process
the announcement and decide what they thought of it. Ballmer, in an interview with
USA Today, opined on the iPhone’s chances to make a dent in the well-populated
smartphone market: “There’s no chance that the iPhone is going to get any significant
market share. No chance.”

I’m not normally one to indulge in schadenfreude, but the wrongness of that pre-
diction is too illuminating to ignore. iPhone went on to become an icon that rede-
fined the public’s concept of what a mobile phone is, and nearly every “smartphone”
on the market takes inspiration from it. Its sibling, iPad, finally popularized the stag-
nant tablet concept and is on its way to replacing the traditional desktop or notebook
computer for millions. iPhone and iPad each own about half of the market share of
their respective markets. The App Store model has redefined the way people buy soft-
ware and has paid out more than $7 billion to third-party developers. As of the begin-
ning of 2013, nearly half a billion iOS devices have been sold.

Why? How did iOS become so successful? What did Ballmer and the rest of the
early-2007 iPhone scoffers miss? Ask any authority who followed the story closely
to pick one word to describe Apple’s advantage, and they’ll say design. (Some cynics
might say marketing, but they’re wrong.)

iOS is arguably the first technology platform to truly put design first. Instead of the
puffed-up and bulleted feature lists, the contortions to accommodate legacy systems,
the assumptions about how a phone was supposed to look or behave, and the obsession
with being the first to the market, iPhone prioritized beauty, responsiveness, and fun.
(And anything that Apple couldn’t get just right was omitted until they could.) This
view of design is about creating happiness, about cultivating a relationship with the
user, about imagining the most positive user experience possible and then doing what-
ever it takes to produce that imagined outcome.

You could almost say that iPhone refused to compromise on its user experience. But
as this book argues, all designs are compromises. Surely, countless tradeoffs and tough
decisions were made in the process of bringing iOS into being. But what’s important is

Prefacexxii

that wherever possible, those compromises erred on the side of paying attention to detail,
abandoning conventional wisdom, and putting in more work to make users happier.

Not solely because of Apple and iOS, but in large part, the world is learning that
design counts. It’s getting harder to compete without good design. It’s harder to find
good designers than it is to find good engineers (and that itself is pretty hard). Well-
designed software really can improve people’s lives, help them be more productive, and
yes, make them happy. This book aims to give you the practices, examples, and advice
you need to make it happen yourself.

You’re a Designer
Design is deciding how a thing should be. In every act of design, that decision- making
is done to accommodate constraints and to satisfy the needs of some audience or
“user.” The needs are paramount, because an artifact that doesn’t do anything useful
for anyone is more a piece of art than a design. And the constraints are your friends,
because they narrow the space of possibilities, making your job much more approach-
able. Almost everything you think about and do as a designer can be narrowed down
to these concepts: How are you serving the needs of the user? How are you working
within the constraints?

Everything artificial was designed by someone. Most of the time you don’t think
about the people who decided how the things around us should be: the height of a
chair’s seat, the shape of a battery charger, the hem of a blanket. That blissful igno-
rance is the goal of many designers. If people don’t think about the design of an
object, the designer has probably done a fantastic job. More than two thousand years
ago, Ovid said it like this: Si latet, ars prodest. If the art is concealed, it succeeds. That’s
one to print and hang on your wall.

If you’ve ever made something, then you’re a designer. Ever built a couch fort?
Arranged some f lowers in a vase? Sketched a map for someone? Whether or not
you thought very much about it, whether or not you followed well-researched prin-
ciples, you designed that thing. That’s design, with a lowercase d. You could take that
approach to designing an iOS app, but the result isn’t likely to be compelling. Books
like this one aim to help you do Design with a capital D. That means absorbing and
imagining as much as you can about how things could be better. It means making the
smartest, most informed decisions possible about the needs and constraints involved.
And it almost always means creating plans, sketches, and models along the way to a
final product. The good news is that you can get there from here, one step at a time,
always experimenting and learning as you go.

Meet the Book
This book introduces and explores the topic of designing iOS apps, even if you don’t
consider yourself a designer (yet). Even if you’ve never taken an art or design course,
if you consider yourself to have more of an engineering or analytical mind than a

Preface xxiii

creative one, or if you’re mystified by what actually goes on in the process of design,
you’re very welcome here.

At conferences, I’ve presented the topic of design to a largely engineering-minded
audience. Lots of programmers know that they should care about design, but the prac-
tice of design seems from the outside to be mysterious or even arbitrary, leaving them
disillusioned or apathetic about it. But after some demystification and conversation,
some folks have told me that they finally get why design is important and how they
can think about it systematically.

This book presents the art and science of design in an accessible, sensible way.
Part I: Turning Ideas into Software steps through the phases of design, turn-

ing a vague idea for an app into a fully f leshed-out design. It goes from outlines to
sketches to wireframes to mockups and prototypes. Each step of the way, you’ll find
advice about how to think carefully, critically, and cleverly about your project. Each
chapter concludes with exercises conceived to encourage you in planning the design of
your own app. Part I includes the following seven chapters.

n Chapter 1: The Outlines—This is all about planning, writing things down,
and making sense of your app idea. You’ll learn about the ways you can use
structured thinking and writing to figure out what your app is about and stay on
track throughout the project.

n Chapter 2: The Sketches—Sketching is the central activity of design. It’s all
about getting ideas out there and seeing where they lead. You can never know
the merits of an idea until it’s on a page, a whiteboard, or a screen. This chapter
will help you sketch with the right blend of adventurousness and discipline.

n Chapter 3: Getting Familiar with iOS—Understanding the constraints of
the platform is crucial. iOS offers a versatile kit for building interfaces and expe-
riences; you should know it well enough to decide when to take advantage of it
and when to diverge from it.

n Chapter 4: The Wireframes—Eventually you need to turn your sketches
into precise, screen-by-screen definitions of how the app should be organized.
A wireframe is a document that specifies layout and navigation without getting
bogged down in pixel-perfect styling just yet.

n Chapter 5: The Mockups—It’s not the only concern of design by far, but it
matters what your application looks like on the surface. In this chapter you’ll
break out the graphics apps and learn how to assemble beautiful assets into a
convincing, pleasant whole.

n Chapter 6: The Prototypes—Sometimes a static drawing of an interface is not
enough. You need to know how it behaves. This chapter is all about simulating
and testing the interactions that make up your app.

n Chapter 7: Going Cross-Platform—Plenty of apps exist not as completely
standalone experiences, but as parts of a multiplatform suite. This chapter
explores the concerns you’ll need to deal with if you want to build the same app

Prefacexxiv

for more than one device. It uses an app that appears on iPhone, iPad, and Mac
as a case study to illustrate how a single idea can wear three different interfaces.

Part II: Principles presents universal principles that apply to any design and that
you should follow if you want to craft an effective app that people will appreciate and
even love. To make sure your app works on every level, each chapter in this part is
based on one of the three levels of cognition identified by psychologist Donald Nor-
man. Many of these principles are applicable to all software design, but here they’re
tailored to the strengths and challenges of iOS. The exercises for each chapter present
sample situations to help you learn how to apply each principle.

n Chapter 8: The Graceful Interface—This chapter examines the visceral level
of cognition, which relates to the way people feel from instant to instant as they
interact with software. It deals with things like touch input, timing, and feel.
Most of the concerns here are subconscious. Users may not notice them, but they
subtly affect how pleasant the software is to use.

n Chapter 9: The Gracious Interface—Here you’ll learn about concerns at the
behavioral level of cognition. That means how users make decisions moment to
moment and how the app communicates possibilities and status. The chapter also
discusses how the app can encourage a sense of adventure so that users feel wel-
come and safe as they explore its possibilities.

n Chapter 10: The Whole Experience—The biggest, vaguest, most intan-
gible, and most important level of cognition is the ref lective level. This chapter
explains how people feel about your app in the long run: whether they rate it
well, whether they recommend it to friends, whether they respect you as a devel-
oper, and whether they’d buy from you again. Happiness is the ultimate goal.

Part III: Finding Equilibrium is meant to function as a reference, inspiration,
and exploratory guide to the various decision points you may encounter in design-
ing an app. It embraces the concept that all designs are compromises and that many
decisions have no single correct answer. This means that many answers to the same
design problem can coexist, and every design, no matter how unfashionable or unso-
phisticated it seems, has something to teach (a fact that many critics seem to forget).
You can look at each chapter’s opposed approaches as a sort of slider control, with a
continuum of answers between the extremes at either end. For each challenge, a smart
designer like you should seek an answer that works best for your app’s unique philoso-
phy. Over time you may find yourself preferring one side of a given slider over the
other. Maybe you like to err on the side of focused rather than versatile. Or perhaps
you’d rather seek the Aristotelian golden mean, straight down the middle. That’s great.
That’s what it means to have a style. Each type of decision is illustrated by examples of
different solutions to the same problem, depending on the angle you prefer. The exer-
cises encourage you to find your own favorite solution for a situation that may have
several possible answers.

Preface xxv

n Chapter 11: Focused and Versatile—One of the biggest decisions you need
to make about your app is its scope. Do you want to do one thing f lawlessly, or
many things competently? What’s feasible depends on the resources available and
your ability to be aggressive about defining what you expect of the project.

n Chapter 12: Quiet and Forthcoming—When most people talk about a
design being “simple,” what they usually mean is that it’s in good order and pres-
ents an understandable amount of information and control at once. In contrast,
designs feel empowering when they simultaneously present as much as possible.
This chapter describes how to control the apparent simplicity of your app from
screen to screen, depending on the emotion you prefer to evoke.

n Chapter 13: Friction and Guidance—Part of the job of a software designer
is to make many things possible, but also to gently guide people through an
experience. This chapter is about the ways an interface puts down grooves that
encourage a user to move this way or that way next, or slow down before taking
the next step.

n Chapter 14: Consistency and Specialization—Differentiating yourself from
the rest of the apps out there is both an advantage and a risk. When you think
of well-designed apps, the examples that come readily to mind are the ones
that break from convention and get away with it. But respecting the established
guidelines is usually the wiser path. This chapter will help you decide when to
stick to the script and when to diverge.

n Chapter 15: Rich and Plain—The visual styling of an app is the most con-
spicuous outward manifestation of its design. Independent of its functionality,
your app can look extravagant or subdued, lifelike or digital. This chapter will
help you tune the depth, color, and realism of your interface to set its tone and
personality.

Meet the Web Site
The web site for this book is http://learningiosdesign.com. There, you will find
resources such as the Photoshop and OmniGraff le source files for the examples given
throughout the book. You can also offer feedback about the book and find updates of
its content.

You and Your Team
You can follow this book as you work on your own app idea, especially by working
through the practices described in Part I. Even if you don’t yet have an app project,
or if your app already exists and you want to revise it for a new version, you should
be able to benefit from the book. Parts II and III are compatible with dipping into for
inspiration or advice.

http://learningiosdesign.com

Prefacexxvi

From time to time, the book may talk as if you are a designer working with a
software engineer or a team of engineers. That of course doesn’t need to be the case.
Maybe you’re one of that noble species, the lone programmer/designer hybrid. Maybe
you’re a product manager looking to understand design better. It doesn’t really matter;
whenever this book mentions “your engineers,” it’s fine if that means you!

Art/Science Duality
Design is full of what are called “wicked problems”: they’re difficult to define, they’re
impossible to come up with definitive answers to, and they’re never finished. That’s
likely to spook some people, but it’s also what makes design so much fun. You never
know what you’re going to get. There’s always some way to improve on your work.
Everything is a matter of taste, and yet some answers are unequivocally better than
others. There’s no recipe, and yet there are morsels of wisdom and inspiration to be
found everywhere.

Design is an art. And it’s a science. And it’s neither. Steve Jobs liked to say that what
Apple does falls “at the intersection of technology and liberal arts.” You may find your
team arguing about how to make a decision. One side is showing numbers; usability
test metrics clearly indicate that design A is more efficient than design B. The other
side is arguing that based on aesthetics, design A just doesn’t feel right. Who wins?
Maybe it’s one of those two options; maybe it’s a third, new option. Figuring it out is
part of the thrill of design.

You could take a completely scientific approach, refusing to budge on anything
until you’ve run a statistically significant study. You could also take a completely artis-
tic approach, following your muse and composing your personal magnum opus in app
form. But you won’t get very far with either one alone—data and heart both matter.

Inspiration Is Everywhere
This book can give you specific advice on specific topics and situations that occur
often in the work of designing apps for iOS. But your growth as a designer depends,
more than anything else, on your willingness to absorb inspiration from around you.
Pay attention to all kinds of design: graphics, interiors, architecture, games, anything.
Read widely: psychology, art, history, biology, everything. The most seemingly irrel-
evant knowledge may end up informing your work as a designer someday, in some
oblique way. If you do nothing else, use lots of well-regarded apps and think about
what makes them successful. The more you examine and ponder great work of all
kinds, the better you’ll get at it yourself.

Again, growing as a designer is a lifelong journey, but here is a necessarily short list
of reading material to get you started. Some of these books are mentioned again in the
chapters where they’re especially relevant.

Preface xxvii

n Universal Principles of Design by William Lidwell, Kritina Holden, and Jill
Butler—A delightful collection of 125 concepts that apply to all categories of
design. Very compatible with f lipping through for quick inspiration.

n The Elements of Typographic Style by Robert Bringhurst—One of the most care-
fully built, wisdom-packed books of all time. Yes, Bringhurst will make you
knowledgeable about type, but he will also inspire you with his methodical,
tasteful approach to design in general.

n Visual Explanations: Images and Quantities, Evidence and Narrative by Edward
Tufte—Or any of his four main books, really. Tufte tends to lean toward infor-
mation design for print, but the principles he espouses should be useful to any-
one who has any interest in making things understandable and beautiful.

n Designing Interactions by Bill Moggridge—This book is a collection of captivat-
ing interviews (included on DVD) from original Macintosh software lead Bill
Atkinson to legendary game designer Will Wright.

n Sketching User Experiences: Getting the Design Right and the Right Design by Bill
Buxton—Much of the reverence that technology designers have for the practice
of sketching can be credited to Buxton. Sketching is good for your brain and
good for your work.

n The Design of Everyday Things by Donald Norman—A classic that has stood the
test of time. This book pioneered the dissatisfaction with poorly designed expe-
riences and set the stage for a generation of designers to make the world a more
agreeable place to live in.

n Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests by
Jeffrey Rubin and Dana Chisnell—If you’re interested in the scientific side of
design, this is an excellent walkthrough of the procedures and principles of col-
lecting data from a sample of the target audience using your app.

n “The Nature of Design Practice and Implications for Interaction Design
Research” by Erik Stolterman—A brief academic paper, chock full of references
to other inf luential papers, about what design really is and how to deal with its
complexity.

n Basic Visual Concepts and Principles: For Artists, Architects and Designers by Charles
Wallschlaeger and Cynthia Busic-Snyder—A solid grounding in perception and
the construction of visuals.

n Revolution in the Valley: The Insanely Great Story of How the Mac Was Made by
Andy Hertzfeld—This book is a treasure trove of firsthand anecdotes about the
culture and creativity surrounding the development of the original Macintosh. If
it doesn’t get you excited about making technology, nothing will.

n How the Mind Works by Steven Pinker—A comprehensive tour of what we
understand so far about human psychology. Not directly related to software
design, but a surprising source of insight into how people think and why design
principles work the way they do.

Prefacexxviii

n Thinking, Fast and Slow by Daniel Kahneman—An up-to-date psychology book
about how people pay attention, judge situations, and make decisions. Another
surprisingly enlightening read for science-minded designers.

And here are a couple of things that aren’t books.
n “Inventing on Principle”—A one-hour talk by Bret Victor, interaction designer

for iPad (among many other impressive accomplishments). Victor has among the
most thoughtful and inspirational minds in technology design, and this talk is a
fantastic place to start learning from him. This is the sort of talk you’ll want to
come back to once a year or so.

n Ideo Method Cards—A deck of cards from the legendary product design firm
Ideo. Each card describes a “user-centered” practice that can be of use to design-
ers working through an interesting problem. You can casually f lip through the
deck for ideas, assemble a mini-deck for a given project, or make up your own
ways of getting the most out of them.

n Oblique Strategies—A set of cards, each bearing an enigmatic phrase meant to
motivate and give direction to a person facing a creative problem. They were
originally created by Brian Eno and Peter Schmidt for musicians, but creative
people of all kinds have since found them useful for breaking through difficulty.
The cards themselves are rare, but plenty of web- and app-based editions are
available.

I found these resources helpful. Hopefully some of them will be at home in your
own garden of inf luences and inspirations.

Now…let’s make some software.

Acknowledgments

Turns out writing a book is hard! Mountains of thanks go out to all these people for
making it possible.

Thanks to Barbara Gavin and Erica Sadun for taking a chance on a shy and inexperi-
enced speaker and inviting me to speak at the Voices That Matter series of conferences,
which eventually led to this book project. Thanks to Trina MacDonald at Addison-
Wesley for guiding me through the writing process. Thanks to Betsy Hardinger for
editing that makes me seem like a much better writer than I am. Monumental thanks
to my review board: Lukas Mathis, Jim Correia, and Jon Bell; my trust in their wisdom
is the reason I’ve been able to maintain confidence in this endeavor.

Thanks to all my colleagues at the Omni Group for giving me the chance to make
good software and talk to brilliant people all day as my job. Every day, I feel as if I’m
getting away with something. Thanks to my instructors and classmates at the Univer-
sity of Washington’s Human-Centered Design & Engineering professional M.S. pro-
gram, where I’ve finally been able to get an academic grounding in the thing I’ve been
doing all this time. Thanks to my dear friends in #rosa for their endless support and
encouragement.

Admiration and thanks go to Yasunori Mitsuda, whose Xenogears albums provided
the soundtrack that kept me pushing keys. Thanks, too, to the various coffee shops of
Seattle, for providing the perfect writing environment.

It seems as if every book’s acknowledgments page mentions family members’
patience; now I understand why. Copious gratitude and love to my wife, Hiroko, for
her steadfast patience and support. Ultimately, everything is thanks to her.

This page intentionally left blank

About the Author

Since 2004, William Van Hecke has been User Experience Lead at the Omni
Group, one of the world’s most accomplished and affable Mac and iOS developers. Bill
got his start designing software by reverse-engineering his older brother’s text adven-
tures in MS Basic on the Macintosh Plus, and then graduated to creating HyperCard
games to mail to his cousins on f loppy disk.

Bill’s primary hobby is hobby-collecting: reading fiction and science; playing bass
guitar; appreciating, translating, and developing niche video games; studying the Japa-
nese language; mastering tabletop gaming; and exploring 3-D modeling. You can find
Bill on Twitter, prattling on about these topics and more (@fet).

This page intentionally left blank

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

You can email or write me directly to let us know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail we receive, we might not be able to reply to every
message.

When you write, please be sure to include this book’s title and author as well as
your name and phone or email address.

Email: trina.macdonald@pearson.com

Mail: Reader Feedback
 Addison-Wesley Learning Series
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services
Visit our web site and register this book at informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

3
Getting Familiar with iOS

A major part of getting good at designing for iOS is simply coming to understand
what the platform has to offer. Much of your design work will consist of choosing
from a set of standard navigation schemes and controls. Occasionally you’ll need to
dream up a custom element, but even your original designs should be in the spirit of
the platform.

Although you may see these standard elements and behaviors in the apps you
already use every day, you might not realize the reasons Apple and savvy third-party
developers use them the way they do. This chapter supplements the iOS Human Inter-
face Guidelines with further explanation and advice about the standard choices available.
Then I talk about how to create your own custom designs that feel at home on iOS.

After you read this chapter, you’ll be ready to start wireframing. While outlining
and sketching, you can get away with scrawling a vague blob in the general vicinity of
a feature and saying something like, “We’ll need to provide some way to turn this set-
ting on and off.” When it comes time to wireframe, though, you’d better know your
options for a setting that needs a two-way toggle (probably a switch, a segmented con-
trol, or a table with checkmarks, depending on the needs of the design).

Navigation: Screen to Screen
Put too simply, the primary challenge of wireframing is figuring out how to fit a list
of features onto a series of two-dimensional screens. Part of that challenge is providing
navigation between the screens in a way that makes sense and is easy for users. Let’s
look at some dependable ways to construct a sensible navigation scheme for your app.

Navigation Controller
A navigation controller is the most common way to get between screens on iOS
(see Figure 3.1 for an example). A navigation bar at the top of a screen indicates
the current location and contains a back button; rightward-pointing chevrons in the
content area offer ways to proceed down the hierarchy. This arrangement allows for
any number of branching paths, with a consistent way of getting back up to the top.

Chapter 3 Getting Familiar with iOS32

The result is a navigation scheme in which a user can scroll vertically on tall screens of
information, and move horizontally to step through the greater hierarchy of screens.
Navigation controllers work well only for a limited number of levels. If your hierarchy
requires users to routinely delve four or five levels deep, you may need to f latten
it out. (Chapter 12, Quiet and Forthcoming, explains how to f latten interface
hierarchies.)

Navigation controllers are very familiar to iOS users. They trace their heritage all
the way back to 2001, on the original iPod, where selecting a row required spinning a
physical wheel. They’re still the most reliable, most predictable way on iOS to present
a treelike hierarchy of information. Users take it for granted that many iOS apps have
a navigation bar at the top of each screen, and that’s the first place they look to check
which screen they’re on and how to go back a screen. Yes, the navigation controller is
the go-to workhorse for getting around in an iOS app, and it’ll seldom do you wrong.

Figure 3.1 The Keyboards branch of the navigation controller hierarchy in the
iPhone Settings app. Tapping a table cell with a chevron takes you to a new screen.

Tapping the back button in the navigation bar takes you back a screen.

Navigation: Screen to Screen 33

Most navigation controllers use standard table views (described later in this chapter)
to list the options on each screen, but that’s not the only approach you can try. (See
Figure 3.2 for examples of other approaches.) Following are the only strong rules for
creating a navigation controller experience.

n Delving down a level should involve tapping an element that either bears a
rightward-pointing chevron or otherwise presents an obviously tappable piece of
content that the user would want to navigate to.

n There should be a recognizable back button in the upper left, labeled with the
name of the screen that it takes you back to (not with the word “Back”).

n Moving between screens should use a horizontal slide animation—the content
slides leftward for delving down, and rightward for going back up.

As long as you follow those guidelines, the navigation experience should feel com-
fortable and familiar to users. In that spirit, here are a few ways of presenting options
that differ from the ordinary table view.

n A map, where users can tap a pin to open a label and then tap a disclosure button
(bearing a chevron) to navigate to a detail screen. The Maps app on iPhone is an
obvious example, because a map is a much more appropriate way to display geo-
graphical data than a list would be.

n A collection of big, expressive images, especially when there is a strong case
for relying on images rather than text to identify your items. This would be an
exception to the need for rightward chevrons, because they would unbalance the
composition of each icon. Podcasts’ cover view is an example; people react more
immediately and emotionally to colorful cover images than to a list of titles.

n A grid of carefully laid-out previews of content. For an app that focuses on a
specific kind of content, this approach can be far more expressive and inviting

Figure 3.2 Navigation controllers don’t need to use ordinary table views,
as shown on these Maps, Clock, and Podcast screens.

Chapter 3 Getting Familiar with iOS34

than a simple list of titles. Instapaper offers cleanly arranged previews of web
articles to help you decide which one to read.

Split View
Only available on iPad, a split view offers a way to present navigation and content at
the same time, something that helps f latten the navigation hierarchy. Most iPad apps
that have a branching hierarchy work well with a split view. The relationship between
the two sides is simple: what’s selected on the left pane appears in detail on the right
pane. Either side can have a navigation controller with ordinary horizontal navigation,
but both shouldn’t have navigation. (Really, they shouldn’t. It has been tried, and the
result is a confusing mess.) This means that you have two options for spreading navi-
gation across a split view (see Figure 3.3 for an illustration of these two approaches).

n One is like the Settings app, where the sidebar always portrays the top level,
and the content area can navigate. This makes it easier to jump around between
lots of top-level items and then delve into detail for items on the right side if
necessary.

n The other option is like Mail, where the sidebar can navigate, and the con-
tent area always displays details about what’s selected on the left. This is a good
approach when you have a well-defined, consistent type of content being dis-
played on the right, such as emails. People can navigate around their mailbox
structure, and as soon as they tap an email, the right side updates to show it.

Remember that when you use a split view, you need to decide what happens in
portrait orientation: either the split should remain visible, or the sidebar should be

Figure 3.3 At top, Settings-like split view navigation. At bottom, Mail-like
split view navigation.

Navigation: Screen to Screen 35

hidden, sliding in when summoned by the button in the upper-left corner. The answer
is easy when you use Settings-style navigation as just described: keep the sidebar vis-
ible. The back button in the upper-left means you wouldn’t have a place to put a side-
bar toggle button. (Some apps, such as Facebook, do it anyway. The sidebar is hidden,
and it’s unavailable at any level other than the top.)

For a Mail-style app, the answer depends on how important it is to keep the side-
bar visible at all times versus how likely it is that the user will want to focus on the
content area. In Mail, the sidebar is hidden in portrait orientation because users want
to focus on a generously sized message area. (See Figure 3.4 for an illustration of these
options.)

Tabs
A tab bar provides ever-present top-level navigation at the bottom of the screen. It’s
perfect for an app that needs to provide quick access to a few distinct top-level screens.
The quintessential example is the Music app on iPhone: it offers tabs for Artists, Play-
lists, Audiobooks, and so on. Listeners on the go probably want to quickly jump to a
certain category and then quickly navigate to the content they’re interested in. The tab
bar means that even if they last left the app several levels deep in the Artists hierarchy,

Figure 3.4 Portrait orientation and split views. At top, a navigation con-
troller in the main content area. Hiding the sidebar means the user must
navigate all the way to the top level to get the sidebar back; keeping the

sidebar is the kinder choice. At bottom, a navigation controller in the side-
bar. Hiding the sidebar helps the user focus on the content area; keeping

it gives the user easier access to navigation.

Chapter 3 Getting Familiar with iOS36

they can still immediately tap the Audiobooks tab and start navigating that hierarchy
instead. (Or they could even tap the already selected tab to jump to its top level and
start over.) If you use a tab bar, it should provide the top-level navigation of the entire
app. Tabbed views can contain navigation controllers, but not the other way around.

Deciding to go tabbed is a big choice, because that tab bar will be visible for most
or all of the time people are using the app. You can offer only four or five top-level
categories at a time. When you have more than five, the burden is on the user to
decide which ones she thinks she’ll need most often; everything else gets hidden
behind the More tab. Even if you have only a few tabs now, this decision can come
back to haunt you when you want to add more of them later. Unless your app strongly
benefits from the always-there top-level navigation provided by a tab bar, you might
want to consider an ordinary navigation controller instead.

Every screen, except for some special screens dedicated to specific tasks (modal
views, described shortly), needs to dedicate 49 points of height to that heavy black bar.
(And even though you can tint it any color, you should keep it relatively heavy.) The
tab bar’s size, color, and shiny highlighting effects give it a dominant role in the visual
composition of a screen, compared with lesser elements like toolbars. That reinforces
the significance of the tab bar’s role as the top-level navigation of the whole app, with
the power to send users to different branches of hierarchy with only one tap.

Segmented-Controls-as-Tabs
From time to time, you may want to offer a couple of views of the same informa-
tion, or variants of the same screen. You might be able to offer a switch between those
options in the form of a segmented control that behaves like tabs. A proper tab bar
controls the whole app, jumping from one top-level section to another, but this light-
weight tab style (let’s call it segmented-controls-as-tabs) affects only the content or
presentation of the current screen. As a result, you can offer two or three personalities
for a single screen. If you have a popover to give quick access to more than one set of
controls, such a segmented control may be the answer. iWork makes good use of this
technique in its inspector popovers.

Don’t rely too heavily on this technique. It can feel arbitrary and confusing when a
navigation scheme switches back and forth between the horizontal sliding of a naviga-
tion controller and the control-swapping of segmented-controls-as-tabs.

Multiple Personalities
Here is a way to gracefully cram a couple of completely distinct interfaces and naviga-
tion structures into one app. In response to the tap of a button (usually in an upper
corner of the screen), the entire interface transitions to reveal a new interface, some-
times with its own navigation scheme. The most prominent example is iBooks, with
its entire store-shopping experience presented on the reverse side of its reading expe-
rience, complete with a three-dimensional f lip transition between the two. The big,
fancy animation makes it feel as if you’re taking a major navigational leap—“going to
the store”—without having to open a separate app. When you buy a book, it hovers in

Navigation: Screen to Screen 37

midair as the app f lips back to the bookshelf, thus logically connecting the two sides.
It’s a fairly rare scheme, and you should use it only when you’re certain you need it,
but it can be invaluable when you need to include two similar but distinctive interfaces
in one app.

Modal View
You can use a modal view to handle a specific task that doesn’t quite fit into your
ordinary navigation hierarchy. While the modal view is open, the normal naviga-
tion and functionality of the app are temporarily unavailable; the app is in a specific
“mode,” hence the name. A classic example is composing a message in the Mail app.
This mode is available from anywhere and has nothing to do with where you are in
the hierarchy, so it takes you out of the hierarchy momentarily to deal with the task of
writing a message. Then it drops you back where you were.

On iPad, you have several choices for presenting modal views (see Figure 3.5), each
with its own personality.

n Full screen—The iPad screen is pretty big, so a full-screen modal view is a big
deal. This option makes sense when users will be spending a lot of time in the
mode and it’s OK for them to forget about the main app itself in the meantime. A
full-screen modal view takes over the whole device, behaving like an app within
an app, dedicated to a specific task. Think of things like a web browser built into
a Twitter app. You could very well follow a link that someone tweeted and end
up spending 45 minutes reading an engrossing article or watching a video; that
experience needs to use the whole screen, and not relegate you to a fragment of
the screen while the rest of the app peeks out at you in the background.

n Page sheet—This is a step down from the full-screen style, in that a page sheet
has a constrained width. In portrait orientation, it looks like a full-screen modal
view, filling the width of the screen at 768 points wide; but in landscape orienta-
tion, it’s still only 768 points wide, leaving some of the underlying interface vis-
ible but dimmed. The Mail app uses this style for its composition window. The
resulting experience is close to the full-screen style. Users can easily spend a lot
of time and thought writing an email, so they should be given a quiet, dedicated
space to do so. But there is one key difference from the full-screen style: a page
sheet keeps the interface from getting too wide. A 1,024-point-wide composi-
tion area would result in really long lines of text, a classic blunder of poor typog-
raphy; the distance the eye needs to travel to go from the end of one line to the
beginning of the next is too far, causing reading mistakes and cognitive fatigue.
(See more about typography in Chapter 4.)

n Form sheet—This is a step down from a page sheet. A form sheet takes up
only 540 × 620 points, hovering in the middle of the screen, with the rest of the
interface dimmed. This doesn’t depart very far from the normal context of the
app, so it feels more lightweight. It’s useful for tasks that need a bit of space but
that you expect to take only a moment, such as entering account credentials for a
web service, exporting a document, or changing appwide settings.

Chapter 3 Getting Familiar with iOS38

n Current context—Sometimes you need to present a mode inside an existing
view, such as a popover or one side of a split view. Perhaps you want to allow
access to the sidebar pane while a mode is under way in the content pane. Or
you need to break out of the navigation hierarchy of a popover to take care of a
special task. You shouldn’t need to use this style of modal view very often, but
it’s good to know you have it for special situations.

n Popover (as an alternative to a modal view)—A popover isn’t usually a modal
view, but you can use it to fulfill the role of one in a lightweight way. When
you’re considering a modal view, ask yourself whether a popover might do the
job better. A popover keeps users much more in context rather than pull them
away from what they’re working on. (If you need to make a popover feel more
modal, you can give it Cancel and Done buttons and disallow tapping away
to dismiss it, but this design is falling out of fashion.) So if the task at hand is
related to the existing interface on the screen, and doesn’t need all the space
afforded by a modal view, try a popover instead.

On iPhone, modal views are simpler: they’re always full-screen, because anything
smaller would be barely worthwhile (although the partial curl transition style does
leave much of the existing screen in place). Most of the time you should use the
straightforward vertical transition, which simply slides the modal view up from the
bottom of the screen and then slides it away when the task is finished. Notice that
the transition doesn’t push the previous screen out of the way, as horizontal naviga-
tion does; instead, it merely covers it up, thus promising that it’ll still be there when
the mode is over. Users recognize and understand that type of transition as being a
momentary diversion from normal navigation. Other transitions might leave users
guessing about whether they’ve been transported to some other part of the app. See
Chapter 6, The Prototypes, for more about transitions.

Figure 3.5 Types of modal view. The “current context” type can appear
anywhere; in this example it appears in a sidebar. A popover can be

modal or nonmodal.

Navigation: Screen to Screen 39

Po pover
A popover is a marvelous little iPad-specific element that seems unremarkable at first.
It’s a little window with a triangular stem pointing at the object that summoned it. But
the humble popover contributes great sophistication to the iPad experience, for a few
subtle reasons.

n You don’t need to manage it like a window on the desktop. It can’t be moved,
and it’s generally only as big as it needs to be.

n It appears at the time and place you need it.
n It disappears as soon as you’re finished with it, either because you reached the

end of its little workf low or because you decided to stop using it and tapped
away.

n It generally keeps you in the context of the surrounding interface so that the
interlude of using the popover doesn’t interfere too much with the train of
thought you had before opening it.

n It assumes that you’re editing in-place and that you want your work to be saved,
unless you manually cancel or undo it. Simply tapping away from a popover
shouldn’t discard your charges.

All this combines to make using popovers a lightweight experience. Consequently,
interfaces can be designed to be “quieter” than they would be otherwise. Functional-
ity can be easily summoned, used, and then put away for next time, rather than spread
out all over the screen all the time so that you can get at it easily. (See Chapter 14 for
more about quiet interfaces.)

Another exciting thing about popovers is that they can contain screens and naviga-
tion hierarchies all their own, distinct from what’s going on in the main app. You can
think of a popover as a little iPhone sitting inside the iPad screen, with its own min-
iature app that deals with one concern of the greater app. Popover navigation can use
navigation controllers, segmented-controls-as-tabs, and modal views.

Cu stom Navigation
So far, we’ve looked at the standard navigation methods offered out of the box with
iOS. If you need to—and if you have the software engineering wherewithal at your
disposal—you can create almost any navigation scheme that you dream up. But be
careful. Lots of apps with unique needs present their experience in a clever, original
way, but not all apps have those unique needs. Applying an unexpectedly distinctive
design to a problem that could have been solved with a standard approach can back-
fire. Think carefully before deciding to use a clever and unique navigation scheme as
a primary way of differentiating your app. (See Chapter 14 for advice about unique
designs.)

The most important thing to keep in mind when thinking up new navigation
schemes is that they should feel spatially consistent. The conventional navigation con-
troller scheme works well in users’ minds because they can easily build a map of how

Chapter 3 Getting Familiar with iOS40

it works (often called a mental model.) Deeper levels are further to the right, higher
levels are off to the left, and modal views slide in from off-screen and then slide away
when they’re no longer needed. In iBooks, tapping a book on the shelf causes it to zoom
toward the viewer and open. The iWork apps present a similar experience by showing
a grid of documents that zoom up when you tap on them and zoom back when you’re
finished editing. GarageBand is more ambitious. It starts with that same document grid
but adds a carousel of various instruments, and a tracks overview is revealed by a vertical
rotation effect. (See Figure 3.6 for a map of GarageBand’s navigation scheme.)

Figure 3.6 GarageBand on iPad has a custom navigation scheme that’s
complex but consistent.

Advice on the Standard Elements 41

Even if users never consciously think about the mental map they’ve made of the
app, they’ll be put off if that mental map is violated. Use smooth, sensible transitions
every time the screen changes, especially when the changes are big ones. The simpler
you can make the spatial representation of your navigation, the easier it will be to
make it feel stable and consistent to users.

Advice on the Standard Elements
Elements are the building blocks that make up screens: views, controls, alerts, and so
on. In wireframing, you just need to find the right elements and put them together on
the right screens in the right arrangement. Of course, that is like saying that writing a
best-selling novel is only a matter of picking the right words and putting them in the
right order. You’ll need a lot of wisdom to put together great app designs, but to begin
with you should make sure you’re familiar with the building blocks at your disposal.

As a rule, you should choose standard elements provided by the OS over building
your own. For nearly every need, there’s a standard control that does the job reliably
and predictably. Standard controls have the benefit of being familiar to users, who of
course spend most of their time in other apps. Chapter 14, Consistency and Specializa-
tion, goes into more depth about the choice to go standard or custom.

For a basic understanding of the standard elements the platform offers, you should
read the iOS Human Interface Guidelines. The beginning of the chapter said that, too,
and so did Chapter 2. Really, you should read them. That will give you Apple’s offi-
cial baseline position on how these elements are to be used. But for further advice and
suggestions about how to put them to use effectively, based on actual Apple and third-
party examples, here is a rundown of each individual element.

Bars
These basic screen-spanning bars show content and controls.

n Status bar—The only decision you need to make about the status bar is
whether to hide it and, on the iPhone, what style it should be. The different
states of the status bar mainly affect the immersiveness of the app; the more
immersive treatments avoid distracting the user from the content being shown.
The standard light status bar blends in with the interface. This works best when
there’s no immersion necessary, as in communication or productivity apps. On
the opposite end of the spectrum are media or entertainment apps, where you’ll
want to hide the status bar to avoid distracting from the content. But don’t hide
the bar just to show off how cool and immersive you can be. Users tend to care
about the time and their battery level. Only if the immersiveness is more impor-
tant than that information can you justify hiding the status bar. If you’re not
hiding the bar, remember to accommodate 20 points at the top of each screen
in your wireframes and mockups, and consider what your screens will do when
the double-height status bar appears. (See The Worst-Case Height Compression
Scenario in Chapter 4.)

Chapter 3 Getting Familiar with iOS42

n Navigation bar—This bar spans the entire top of the screen (on iPhone) or
a specific view (on iPad). It’s 44 points tall, except in landscape mode on an
iPhone; then it’s 32. A navigation bar is the primary way people move through
the various screens. It sits at the top of the view, framing it with a reminder of
where you are and how to go back up a level. Don’t confuse the navigation bar
with a toolbar. Navigation bars are only about showing a back button, a title,
and possibly a single (bordered-style) button for managing content (an Add but-
ton, an Edit button, a View button, etc.).

n Toolbar—This bar spans the entire screen (on iPhone) or a specific view (on
iPad) and serves to contain controls. It’s 44 points tall, except in landscape mode
on an iPhone; then it’s 32. If the navigation controller is the workhorse for mov-
ing between screens, the toolbar is the equivalent for choosing commands on
screens. A toolbar can contain a limited number of controls, so you’ll need to be
scrupulous about picking them. On iPhone, you’re limited to five 44×44-point
buttons. On iPad there isn’t a hard limit, but you should do your best not to
clutter the bar. Unlike desktop computer users, iOS users aren’t accustomed to
wading through lots of controls. Instead you should think of ways to consolidate
functionality behind a single button, by using popovers, modal views, and action
sheets. (See Chapter 14.)

You have two choices of button style in a toolbar: regular and bordered. The
bordered style is great for emphasizing that something is a button, when going
borderless would make it ambiguous. A button with a text label is the prime
example of something that needs an extra bit of emphasis. Another example is
when there’s non-buttony stuff hanging around in the same bar, and that’s why
a button in a navigation bar is always bordered; otherwise, it could be construed
as being part of the screen title. The HIG advises against using both button styles
in the same toolbar, but on iPad such a design isn’t a big deal. iWork keeps bor-
dered buttons on the left side of the toolbar, and borderless ones on the right.
That’s fine; just don’t mix the styles willy-nilly. (See Figure 3.7 for the example
set by Keynote’s toolbar.)

n Tab bar—This is a 49-point-tall bar that spans the entire screen and always
appears below the content it switches. (The purpose of a tab bar is described
in detail earlier in this chapter, in the section called Tabs.) When you’re

Figure 3.7 Keynote has similar toolbar configurations on iPad and
iPhone. Bordered and unbordered buttons are kept separate for the sake

of tidiness.

Advice on the Standard Elements 43

wireframing for tab bars, remember they’re slightly taller than toolbars, and
you can put only five tabs into one on iPhone. For a while, it was fashionable
to make a custom tab bar that promotes one tab by having it protrude outward
from the top of the bar. Instagram made that design famous. But the practice
seems to be falling out of favor and doesn’t appear in that app anymore. Fads.

Content Views
These are the basic, general-purpose views for presenting content and controls.

n Popover—Earlier you learned why popovers are awesome, so here are a few tips
for keeping them that way. For the most part, users expect popovers to be 320
points wide, for that iPhone-within-an-iPad feeling. Popovers much wider than
that feel awkward hanging off that tiny triangular stem, and a form sheet would
probably work better. Make popovers as tall as you need, of course, but no taller.

When navigating among the screens of a popover, don’t worry if you leave empty
space (because the popover is too tall for the content) or if scrolling is required
(because it is too short). Such minor imperfections are better than making users
sit through a resize animation every time they navigate somewhere. So just find a
height that works reasonably well for all screens in the popover, and stick to it.

n Split view—Remember that the sidebar is always 320 points wide, mimicking
the width of an iPhone screen and allowing you to use similar layout strategies
for both sidebars and iPhone screens. Normally, the sidebar is always visible in
landscape orientation; in portrait view, it is often hidden and needs to be slid in
from the side. But thanks to the official Facebook app, it’s fashionable to offer a
slide-in sidebar that is always hidden until summoned, regardless of the orienta-
tion. This design puts more focus on the content area, at the expense of quick
access to navigation. The tradeoff is that it’s a bit nonstandard and thus is harder
to implement and maintain. Weigh that against the importance of emphasizing
the content in both orientations.

n Table view—Table views are the go-to element for displaying information,
editable or otherwise. Table views appear in sidebars, main content areas, pop-
overs, modal views…everywhere. They can be used for navigation (with chev-
rons or detail disclosure buttons), for selection (with checkmarks), or for data
editing (usually using the value styles, described shortly). The name is a bit mis-
leading: you might expect a table to offer multiple columns, but iOS table views
are a single column (although each cell can display several bits of information).
There are two standard table styles and four standard cell styles to choose from,
each with a terribly nondescript name that makes it hard to keep them straight.

n Text view—Standard text views are straightforward. They’re good when you
need to display, or the user needs to enter, lots of text. Of course, “lots” is relative.

n Web view—There is about one good reason to use a web view: to load an
actual page from the web for tasks like logging in to sites or following a link in
the user’s content. You formerly had to use web views to display rich text with

Chapter 3 Getting Familiar with iOS44

styling applied to it, because the standard text view was plain-text only; but as of
iOS 6, you can put rich text in labels and text views. (Some apps try to put most
of their functionality inside the web view, actually running a web app wrapped
thinly in an iOS app. For advice on that particular venture, see the hybrid web-
app admonishment in Chapter 14.)

Here are the styles of cells you can use in your table views.
n Plain table—This table style pushes the content all the way to the edges of the

view; an example is the message list in Mail. A plain table is great for present-
ing a single, homogenous list of items, especially when the list is likely to get
long. That’s why you see it used for email messages, contact names, music tracks,
to-do list items, or any other uniform collection of items that can get arbitrarily
long. Even within such homogenous lists, though, there can be subdivision indi-
cators, such as letters of the alphabet. In those cases you can use section head-
ers, which f loat among the rows as little eye-catching milestones without being
tappable. And if a sectioned list is likely to be really long, you can provide an
index along the edge of the screen for quickly jumping to a certain group. The
index tends to look silly or awkward if you don’t have lots of data or if you use it
for sections that aren’t strictly ordered in a familiar way such as the alphabet.

n Grouped table—This table style keeps the content in self-contained stacks with
rounded corners. An example is the Settings app in iPhone. A grouped table
works best when you have heterogeneous kinds of information to present on
one screen, when the separation of sections is critical, or when you offer controls
and labels that don’t fit into table cells. Imagine if the Settings app had a single
huge plain-style table for all the settings. There would be no strong separation
between the kinds of options; there would be no place to put the explanatory
labels; and lots of sections would consist of a contrived header and a single item.
See Table 3.1 for a comparison of plain and grouped tables.

Table 3.1 Plain Versus Grouped Table Views

Plain Table Grouped Table

It’s good for any length of list. It’s best for shorter lists.

It’s good for homogenous data. It works fine with wildly different kinds
of data.

Labeled sections help delineate
subgroupings like alphabetization.

Groups provide stronger separation than
sections.

All sections need to be labeled. Groups can be labeled or unlabeled.

All sections are expected to hold roughly
equivalent kinds of data.

Each group can hold a different kind of
data.

It can offer an index for jumping quickly
to a section.

A single index doesn’t make sense,
because there is more than one table
on the screen.

Advice on the Standard Elements 45

n Default cells—The default cell style simply presents a text label and, option-
ally, an image. This style is generally used in navigation to help users identify
the information they want to navigate to next. It’s used to identify artists in the
Music app, people in the Contacts app, and so on. The designers could have
used the subtitle style to include plenty of extra data, but in these cases they
recognized that almost every time, users want to navigate to the full detail
screen. No single piece of information would be most helpful to promote from
the detail screen to the cell, so they left the cell simple, encouraging users to
delve into the detail screen. After all, taps are cheap, and it costs very little to
delve inside and get a dedicated screen of information about the item you’re
interested in.

n Subtitle cells—This cell style includes smaller, gray text below the title to give
additional detail about each item. It’s useful when you need to let users compare a
certain key piece of information between items without having to delve into the
individual detail screens. For instance, the app list in the Notifications screen of
Settings uses a subtitle to indicate the kinds of notifications set up for each app.
Users can see at a glance the answer to their likely question: “Which apps have
notifications enabled, and what kinds?” It’s a clear case of a piece of information
that saves people time and trouble when it’s pulled up a level into the cell.

n Value 1 cells—Yep, that’s the official name of this style. In the Interface
Builder component of Xcode, it’s called “right detail,” which is a bit more
descriptive. This style combines a label and a value, usually to allow users to edit
the value. The label is bold and left-aligned; the value is grayish-blue and right-
aligned. This layout emphasizes the label text, because (at least in left-to-right
languages), people find it easier to compare strings of text that are left-aligned;
scanning down the beginnings of the labels is easy. You can also offer switches
or other small controls in the value area instead of a text string. Value 1 cells are
seen in various places throughout the Settings app, accommodating users’ need
to scan the names of the various options presented there, looking for the one
they’re interested in. Scanning the values wouldn’t help that process very much.

n Value 2 cells—Also known as “left detail,” this style combines a label with a
value that can usually be edited. The text label is deemphasized by its small size
and its fainter color, whereas the value is dark and bold. In this layout, it’s easy to
recognize and compare the values, because they’re left-aligned in the middle of
the cell. This cell type works well when you have pieces of information that are
more recognizable by their values than by their labels, and that’s why it is used in
the Contacts app on iPhone. Names, phone numbers, addresses, email addresses,
and other bits of contact information are pretty recognizable without seeing the
label, so you can easily scan the values on the screen and find the one you need.
(See Figure 3.8 for a comparison of the various cell styles.)

Chapter 3 Getting Familiar with iOS46

n Custom cell styles—You can put almost anything in a custom table cell. So if
you need something a bit different (or very different) from the standard choices,
and you have a good reason for it, you can create your own style. For an exam-
ple, see the message list in Mail. Each row provides a large, bold sender name, a
small, regular-weight subject line, a small gray message preview, and a blue time
indicator. When you dig through your email looking for a specific message, all
these bits of information are likely to be helpful; none of them could be omitted
safely. To implement the message list using one of the standard styles would have
done a disservice to the task of browsing email messages. (See Figure 3.9 for
some custom table cell styles.)

Alerts
Alerts are an efficient, effortless way to drive your user crazy. For decades on the desk-
top and on the web, the alert was a way to pester users with whatever the developer
felt like saying, whether the user cared or not. iOS did a lot to reduce the number of
alerts that users have to deal with, reserving them for times when something is seri-
ously amiss and the user needs to be notified or asked for immediate input. Conse-
quently, when an alert appears it usually heralds an important moment. If it instead
says something inane, banal, or cryptic, it waters down (or poisons) the purpose of
alerts and reduces the attention users give them.

Here are some good times to use alerts:
n When the app can’t proceed unless users enters their account credentials
n When a background process encounters a problem, such as a sync conf lict, that

needs an immediate decision from the user

Figure 3.9 Left to right: Mail, Podcasts, Tweetbot, and Instapaper.
Custom table cell styles support any layout you can dream up.

Figure 3.8 Left to right: default, subtitle, value 1, and value 2 cells.
Each is useful for listing information in a subtly different way.

Advice on the Standard Elements 47

The following are some terrible times to use alerts.
n When an operation completes normally. The interface should make this apparent

without interrupting the user.
n When something the user just tried to interact with, still visible on the screen,

has a problem. In that case, the thing itself should show its status.
n When you want to inf luence the user’s behavior (see Chapter 10).

Look at the animation that a new alert performs when it appears on the screen. It
emerges from nothing, fades in, f loats perpendicular to the screen toward the user, and
then bounces back into place. Almost everything else that happens on an iOS device is
connected to something already on the screen, giving it context and meaning. An alert
is for those rare cases when something happening behind the scenes, something that
normally proceeds without the user’s needing to care about it, suddenly needs the user
to care about it.

Action Sheets
Action sheets are another humble but heroic player in iOS’s quest to make software
quieter and more respectful. Action sheets are a stack of buttons that appears in
response to an action by the user. Their effect is profound.

On iPhone, action sheets always slide up from the bottom of the screen and always
offer a cancel button in addition to their action buttons. On iPad, action sheets might
do the same thing in the virtual-iPhone-interface that is a popover, or they might
appear in a dedicated popover of their own. If they appear in a popover of their own,
there is no cancel button; instead, the rest of the screen serves as a safe place to tap
away and cancel the action.

Here’s what is cool about using an action sheet.
n It hides several similar actions behind a single button, thus simplifying the inter-

face until the moment of need.
n It doesn’t necessarily offer explanatory text, thus making it feel lightweight and

reinforcing the fact that it always appears because of the last thing the user did.
(You can add explanatory text if you really can’t get the situation across with the
button labels.)

n It’s easy for a user to open, check the available options, and then cancel if none
of them is what the user wanted.

An especially thoughtful case is the action sheet that shows a single action button.
In old-fashioned interfaces, where an especially consequential action would be accom-
panied by a fussy dialog box with long explanatory text and buttons for proceeding or
canceling, iOS offers a single, clearly labeled confirmation button. If you really intend
to proceed, you can move your finger an inch and tap the action button. If not, you
just tap away. That’s elegant.

Chapter 3 Getting Familiar with iOS48

Standard Controls
Most controls are fairly straightforward and are well documented in the HIG. Here are
some tips for using them.

n Activity indicator—This is also known as the indeterminate progress indi-
cator, or spinny. On iOS, these are much more common than progress bars. If
something takes less than a few seconds, you just put up a spinny in a location
connected to the work being done, and don’t bother the user with guesses about
how much time is remaining. An activity indicator should suggest what it’s for
by an associated text label, by its location on the screen, or both.

n Date and time picker—This is also known as the wheels of time. Nine
times out of ten, this is the right way to get date input from users. Spinning to
dates that are even decades away is quick and easy. If multiple fields are visible
on the screen, this control helps highlight or otherwise call out the value that
the wheels are editing.

n Detail disclosure button—Normally, when you need to delve inside an item
to see more detail on another screen, you tap a table cell that has a chevron on
the right side. A detail disclosure button serves as a backup “delve inside” tap
target for times when you can’t follow that pattern. You might need to use it in
two cases.

– The item to be delved inside isn’t a table cell and thus isn’t obviously tappable
for more information—for example, the bubble that emerges from a pin on the
Maps app for iPhone, or a photo in Messages.

– The table cell itself has some other function. In the Phone app for iPhone, tap-
ping the cell for a favorite contact starts calling the person, whereas tapping
the detail disclosure button delves into a detail screen about the person.

In that second case, adding a detail disclosure button makes the most sense when
both choices are about equally likely and when the shiny blue button doesn’t
compromise the cleanliness of your visual design. Another option is to split the
two functions between normal mode and Edit mode.

n Info button—This venerable emblem, which is used on the desktop mainly
for editing content details, is supposedly for revealing “configuration details”
on iOS. For a while the same icon was used in the iWork apps on iOS to sum-
mon the style inspector popovers, but it has been replaced by a more expressive
paintbrush icon. Meanwhile, the tools popover, which is closer to “configuration
details,” is summoned from a wrench icon. Many third-party apps that have con-
figuration screens opt instead for a gear icon, because the meaning of the info
icon is so muddled.

n Label—This is an ordinary little string of text that you can use to…label
things. Generally, it’s best to match the style and layout of the default labels on a
grouped table view.

Advice on the Standard Elements 49

– To name something, put a bold label immediately (10–12 optical points) above
it. Keep it on one line.

– To offer additional explanation about something, put a regular-weight label
immediately (10–12 optical points) below it.

– To offer freestanding explanatory text that’s not related to a particular element,
put some empty space (20–24 optical points) between it and the nearest controls.

You don’t need to label everything. A group of obviously color-related controls
doesn’t need to be called “Colors.” The only table on a screen titled “Addresses”
doesn’t also need to be labeled “Addresses.” Make sure you add labels only when
they actually communicate something that wouldn’t get across otherwise.

n Network activity indicator—This activity indicator in the status bar informs
the user of communication happening over the network. Users look here to see
whether their network connection is being used, especially if they’re expecting
some stale information on the screen to be updated. This indicator is a subtle
hint to keep waiting, because the update is on the way.

n Page indicator—This is yet another quietly heroic interface element. Thanks
to its presence on the home screen, this simple series of dots is immediately rec-
ognizable to most users as an invitation to swipe sideways for more content. It
gives you the opportunity to display lots of screen-sized chunks of information
without actually requiring navigation from screen to screen. (See Chapter 12 for
more praise of pagination.)

n Picker—This generalized variant of the wheels of time is used for pop-up
menus on web sites but is pretty rarely seen natively. Most times that you would
use it, you could instead use a table view; the interactions of scrolling through a
table view and of spinning the wheel are almost identical. The main benefit of
the picker is that it lets you stay in context, and that’s why it works well on the
web. (On a web site, you need to stay in context in order to see the identifying
information around the pop-up, so you can’t just navigate to a dedicated screen
for a table view. Nor can you insert an arbitrarily tall table view into a web site
that wasn’t designed for it.) Another benefit is that it’s slightly lighter weight
than a table, because the user simply scrolls to update the value; there’s no need
to tap an item to select it.

n Progress view—This is equivalent to the old-fashioned progress bar seen often
on the desktop. As mentioned in the description of the activity indicator, most of
the time you don’t need a progress view. First, most operations should not take
so long that you need to show the user how far along they are. Second, people
need to see a progress bar only when they have no choice except to wait for the
process to complete in order to get something done. Here are good examples of
using progress views:

– Waiting for a document to be downloaded from iCloud so that you can work
on it

Chapter 3 Getting Familiar with iOS50

– Waiting for an iMovie project to be exported so that you can send it to
someone

– Waiting for an email with heavy attachments to be sent so that you can make
sure it succeeds

If the process usually takes less than a few seconds, or if waiting for it doesn’t
affect the user’s ability to get work done, you’re probably better off with a spinny
activity indicator.

n Rounded rectangle button—This is the one general-purpose, standard style
of button that you can place in content areas. When you’re using buttons in the
content area, make sure you use them for actions. Don’t use them for the follow-
ing other purposes (as always, unless you have a good reason to).

– Navigation is usually better handled with table cells bearing chevrons or detail
disclosure buttons.

– Choosing from a number of options is usually better handled by a table view
with checkmarks or a segmented control.

– Toggling a setting on or off is usually better handled by a switch.
n Search bar and scope bar—These are handy when a screen shows a number

of items and it takes more than a few moments to scroll through them and find
one manually. A common trick is to include the search bar at the top of the con-
tent area and load the screen so that it’s scrolled just out of view. This design lets
people scroll to the search bar if they need it but otherwise leaves it tucked away
out of sight.

n Segmented control—A segmented control is a concise way to offer a very
short list of mutually exclusive options. Often, it’s a headache to come up with
good labels that fit inside the narrow buttons, and you should use a table view
with checkmark selection instead. The following are some good uses for seg-
mented controls.

– Selecting from a handful of options, if you can get your point across with
recognizable images or very short text labels. You can even offer a label just
above or below the segmented control that updates to reinforce the current
choice with a text description.

– Providing options that show or hide other controls based on the setting. The
visual weight (see Chapter 4) and experience weight (see Chapter 13) of the
content-area style of segmented control lend it well to this use. Pushing a big
segment and watching it highlight in intense blue feels appropriately conse-
quential to the subsequent appearance or disappearance of controls.

– Switching between views on a screen in the same way tabs do. See Segmented-
Controls–as-Tabs earlier in this chapter.

Whatever you do, don’t make a segmented control behave like a button. It’s for
choosing between options, and not for performing actions. And remember that

Advice on the Standard Elements 51

for simple on/off toggles, you have the switch at your disposal; a segmented con-
trol with “on” and “off” segments doesn’t make a lot of sense.

n Slider—This is a great way to provide quick control over a continuous setting
when the actual numbers aren’t very important. Excellent examples in the oper-
ating system are the brightness and volume sliders. Nobody ever thinks, “I could
hear better if the volume was at 86% right now” or, “It’s getting dark; I should
turn the brightness to 39%.” Instead, they think, “Quite a bit louder” or, “A lit-
tle dimmer.” That’s the sort of thing sliders excel at. People don’t know exactly
what setting they need beforehand; instead, they need continuous feedback while
moving the knob. So make sure users can see or hear the result as they move the
slider. It’s frustrating having to go somewhere or do something to get the feed-
back they need.

n Stepper—A stepper is good for numerical settings when the number matters but
adjustments tend to be within a small range. Poking the plus or minus button
until you see the number you want is a cognitively cheap interaction, compared
with typing in a number. A setting that was almost always set to 1, 2, or 3, for
instance, would work well with a stepper.

n Switch—You can put a switch in a table cell to offer a simple on/off toggle.
Flipping a switch feels fairly weighty, so you can easily use it for consequential
settings or let it show or hide other controls. Make sure that the two opposing
settings are easily gleaned from looking at the label. Something like “Automati-
cally download new items” goes well with a switch. A vague title like “Hori-
zontal Layout,” where the opposing option is not immediately apparent, is not as
good. (That would be better served by a segmented control with the label “Lay-
out” and segments called “Horizontal” and “Vertical.”)

n Text field—The text field is commonplace on the desktop and the web, but
it often feels a bit crusty on iOS, especially if it’s just sitting in a content area,
lacking any placeholder text. Sometimes, you can offer a better way of entering
information, such as picking from a table view. Text input is even more of a pain
on a touchscreen than on a physical keyboard, so avoid it when you can. In con-
tent areas, a table cell with text input enabled is often more attractive. But when
you need text input and you can’t use a table cell, then a text field makes sense.
(See a comparison between text fields and table cells in Figure 3.10.)

Figure 3.10 Text fields (left) look dated, feel cramped, and are hard to
balance. A table cell with text input enabled looks nicer, and using place-

holder text instead of a value cell style leaves more room for typing.

Chapter 3 Getting Familiar with iOS52

Custom Controls
If you work on a sufficiently complex software project for a long enough time, you’re
bound to run into cases where the standard building blocks don’t quite provide the
best experience you can imagine. This section isn’t about customizing the appearance
of standard controls; that’s a topic for the mockups phase in Chapter 5. Instead, it’s
about making controls that behave in a new way.

Most of the time, you can and should base your custom control on a standard one.
There’s likely to be a standard control that kinda does what you want but that you need
to tweak. By carefully adjusting its characteristics to satisfy the interaction you have in
mind, you can keep your custom control as close as possible to the spirit of the platform.

Of course, it’s possible to create an entirely original control from whole cloth,
without basing it on anything that came before. If you and your team can pull this off
perfectly, you’ll be heralded as UI design heroes. If you execute it anything less than
perfectly, however, it’ll come off as awkward and painful to use.

Suppose you want to provide a long list of options in a quick, easily browsed way,
without taking up a lot of space. These options are easily represented by small square
icons, so a big tall table view with labels would be overkill. But a segmented control
can’t hold all the options you’re planning. What kind of custom control could you cre-
ate to do the job?

Start by looking at the standard controls that offer a way to pick from a list. The
picker control’s vertical spinning wheels do a good job of offering a lot of options
without taking up much space. What if you could adapt the picker concept to a more
compact, icon-based set of options? Presenting…the horizontal mini-picker. (See
Figure 3.11.)

This control can hold any number of options, as long as they’re represented by dis-
tinctive, square icons. It takes up only as much space as a single table cell row, thanks
to its horizontal orientation. And it’s immediately familiar, because it takes advan-
tage of an existing control’s interaction metaphor. In fact, to typical users, it probably
wouldn’t be obvious that the control was custom made. For all they know, it’s simply a
standard control offered by the operating system. That’s great! Blending in as a natural
part of the platform is a noble goal.

There are plenty of ways a control can give away its custom status. If you miss any
of the following considerations, your control is a lot less likely to be perceived as fit-
ting in with the rest of the system.

Figure 3.11 A horizontal mini-picker for choosing fill styles in
OmniGraffle. It tweaks the concept of a vertical picker for a slightly

different purpose.

Exercises 53

n How does the control react to various gestures—tap, double-tap, touch and hold,
drag/swipe, and the like?

n What happens if you accidentally touch the control and then try to drag your
finger away without letting go? (On a standard button, this lets you cancel a
mistap.)

n How does the control adapt to different amounts of available space, especially
when the orientation of the device changes?

n What does the highlight look like while you’re in the middle of tapping the
control?

n How does the control work with accessibility features, especially VoiceOver?

Summary
iOS offers a healthy collection of carefully thought-out building blocks that you can
use to craft your own navigation hierarchies and screens. Plenty of life-improving apps
can be built using only these standard elements and navigation schemes. But if you
need to, you can build your own custom navigation and custom controls. Just make
sure that anything you create conforms to the spirit of the platform.

Now that you’ve familiarized yourself with the toolkit available (by reading the
HIG and this chapter), you’re ready to start building wireframes in earnest.

Exercises
It’s time to try out your new knowledge. Give these exercises a shot to solidify your
familiarity with the standard iOS elements and your understanding of when to cus-
tomize beyond them. Do each one a few times, choosing a different example for each
iteration, if you like.

 1. Think of a single feature in your own app. What screens and elements might
you need? Sketch out a couple of approaches using different kinds of controls to
see which one feels right.

 2. Choose a standard control. Imagine how you could design a custom version of it
that serves a slightly different purpose. Can you make it more precise (or less, if
that’s what is needed), more compact, or more expressive? What purpose would
your custom control serve better than any existing standard control?

 3. Draw the geography of your app the way GarageBand’s is drawn in Figure 3.6.
Can you make spatial sense of the navigation scheme you’re using?

This page intentionally left blank

1-D layouts, 76
1+1 = 3 effect, 94
1.5-D layouts, 76
1Password app, 281
2-D layouts, 76

A
Accessibility, 213–215
Accessibility Programming Guide for iOS, 214
Accounts, Mac Mail, 132–133
Acorn, graphics tool, 86
Action sheets

confirming actions with, 190–191
contrast for buttons, 99
overview of, 47
paying attention to context with, 247
using hue for, 286

Activity indicator, as standard control, 48
Adaptation, invisible status of apps and, 180–181
Administrative debris, UI paraphernalia as, 238
Aesthetics (rich and plain)

color vs. monochrome, 286–290
depth vs. f latness, 290–296
exercises, 302
overview of, 285–286
realism vs. digitality, 296–301
summary review, 301

Affordances, 169–170
Alerts

animating with motion sketches, 115
appropriate use of, 190
avoiding annoying, 216, 218
delivering important text message with, 173
overview of, 46–47
showing contextual status with badges, 179

Alignment, 66
Alpha software, 121–123
Anatomical components, of elements, 90
Animations, 115–117, 161–163
Annotations, 19, 25
Antialiasing, 59
Antirequirements

keeping rejected ideas as, 6
pruning features for focused apps, 226
specifying in versatile apps, 235–236
specifying what app is not for, 9–10

App Store
creating market for life-improving software, 197
encouraging experimentation, 278

listing app in, 202–204
listing app name in, 199
release notes for, 209–210
tap target size for purchase button in, 161

App Store Review Guidelines, 204
Appearance. See Aesthetics (rich and plain)
Apple, xix, xxi–xxii, xxvi
Architecture outline, 13, 20
Architecture sketches, 20
AssistiveTouch, 214–215
Attention

budget, 237–238
respecting user, 215–218

Autosave, manual, 263

B
Back button, 33
Background

adding underhighlights to, 105
safe hues for, 286–287
using alerts for processes in, 46

Background contrast
overview of, 92–93
presenting image content, 81
with visual weight, 64–65, 90–92

Badges, for contextual status alerts, 179
Balance, as layout principle, 71
Balsamiq tool, prototypes, 118–119
Baseline, measuring text optically, 59
Basic scale, rhythm in layout, 68–69
Behavioral level of cognition, defined, 167
Betrayal of trust, 216–218
Binocular vision, 291–293
Blank slate, 267–268
Blending modes, applying gradients, 103
Borders

1+1 = 3 effect in, 94
applying understated layout to, 72
for contrast and visual weight, 90–92
toolbar button, 42

Bounds, optical measurements and, 58–60
Branding, with certain hue, 287–288
“A Brief Rant on the Future of Interaction Design”

(Victor), 146
Brightness

HSB color model and, 87–88
perceived as value, 88–89
slider, 51
using, 289–290

Index

Index304

Brushes app, 171
Bug reporting

overview of, 121–123
using tickets in bug-tracking database, 5

Buttons
avoid making segmented controls behave as, 50
for contrast in action sheet, 99
generous tap targets for, 159–161
rounded rectangle, 50
styling communication cues, 84
styling instantaneous feedback, 147–149
styling with understatement, 72

Buttons, custom
bevel, 104
contents, 106
fill color, 102
gradient, 102–103
overview of, 100–101
shape layer, 101–102
stroke, 103–104
texture, 105
underhighlight, 105–106

C
Calendar app

orientation on iPhone, 78
ornamentation in iPad, 299
replicating office supplies, 298
resourcefulness of, 183
scaling back in iPad, 228

Camouf lage, contrasting objects to avoid, 89
Canvas, 100–101, 107
Cap height, 59, 70–71
Capability, conveying

App Store listing, 202–204
icon, 199–202
interface interaction design for, 184–185
launch image, 202
name, 199
overview of, 198
price, 205–206

Cargo cult design, avoiding, 277
Case study. See Mail app, case study
Cell styles, content views, 44–46
Center alignment, in layout, 67
Center case, versatile app design, 234–235
Characters, principles of typography, 73
Chrome, UI paraphernalia as, 238
Clarity, from text and visual weight, 250–251
Clock app, 78
Clock screens, 33
Coherence, of animation, 117
Color

customizing with tints, 279
fill, 102
HSB, 87–88
perceived brightness of, 88–89

RGB, 86–87
styling communication with, 84
styling contrast and visual weight with, 89–92
vs. monochrome, 286–290

Colors, programmer’s, 288–289
Columns

in 2-D layouts, 77
principles of typography, 73

Commands
Mac Mail, 133–134
Mail for iPhone, 136, 138

Communication
breakdown of, 176–177
as styling attribute, 84

Communication apps. See also Mail app
adding friction to protect user, 258
immersive status bar for, 41
on mobile platforms, 128

Companion apps, 129–130
Competitive analysis, in outlining, 7–8
Complexity of design. See Versatile apps
Comprehensive documentation, 206–209
Conciseness, of written text, 174–175
Connotation, 168–171, 172
Consistent design

avoiding cargo cult design, 277–278
diff iculty of novelty apps, 282–283
exercises, 284
getting the most of HIG, 272–273
guidelines, 271
how it all works out, 271–272
overview of, 273–275
precedents, motifs, patterns, and shorthands,

275–276
specialization vs., 272

Consumption-oriented apps, full-screen mode, 249
Contacts app

attaching commands to objects, 138
resourcefulness of, 183
respecting user data, 216
value 1 cells for, 45

Content
2-D layouts and, 77
adding to custom button, 106
adding to mockups, 1–6
bright elements stealing from, 289
designing layers for, 108
information density and, 75
layout of controls vs., 74
neutral interface of apps focused on, 286
presenting controls in areas of, 75
presenting with split view navigation, 33–34
rounded rectangle button in areas of, 50
styling for contrast and visual weight, 90–92
transparency, and reading of, 94
views, 43–46

Contents, anatomical component of an element, 90

Index 305

Context, iOS paying attention to, 246–247
Contextual controls (documentation), 178
Contextual inquiry, in outlining, 7
Contextual menus

paying attention to context with, 247–248
providing guidance, 178
sketching interactions for, 26

Contextual status, 179–180
Contour, 89
Contrast

brightness for, 289
designing layers with, 108
examples of, 97–99
importance in visual design, 89
measuring images/controls optically, 60
posterizing to evaluate, 95–97
transparency for, 93–94
using low internal background, 92–93
visual weight for, 64–65, 89–92

Controls
in content areas, 75
custom, 52–53
designing for layers, 108
guidance at point of need for, 178
hiding vs. disabling, 248
instantaneous feedback, 147–149
layout of content vs., 74
measuring optically, 60
segmented-controls-as-tabs navigation, 36
sketching on-screen, 22–24
sketching workf low, 26–29
standard, 48–51
text label with icon for crucial, 176
tints for customizing, 279
toolbar, 42
understatement for, 72
undo for, 187, 189
viewing gradient, 103

Conventions, design
conscientious divergence from, 279–280
harmless distinctiveness from, 279
overview of, 271–272

Conversational documentation, 210
Conversations, sketching during, 16–18, 20
Convertbot app, 281
Copycats, design, 277–278
Credentials, signup experience, 260–261
Cross-platform

case study of Apple Mail, 131–141
evaluating virtues of all platforms, 127–129
exercises, 142
outlining, 130–131
overview of, 127
standalone, mini, and companion apps, 129–130
starting from scratch, 130
summary review, 141–142

Cues
adding friction with scary, 259
combining imagery/text with, 176
false, 171
as guidance, 265
interaction, 169–171

Current context modal view, iPad, 38
Curves, animation, 162–163
Custom

appearance, 279
buttons, 100–106
cell styles, 46
controls, 52–53
navigation, 39–41

D
Data, respectfulness of user, 216–218
Date and time picker, 48
Dead-end (rejected) ideas, 6, 17
Decision fatigue, human attention budget, 238
Deep prototypes, 119–120
Default cell view, information in, 44–45
Defensive design, 185–187
Delay, 147–149
Delete button, 160, 190–191
Delete Contact button, Contacts app, 65
Delicious Generation, 278
Demoting features, 243–246, 259
Denotation, 167, 172–174
Depth vs. f latness

extreme examples, 293–296
lighting, 291–293
overview of, 290–291

Design apps, 119
Design bugs, 121
The Design of Everyday Things (Norman), 170
Design specification, in outlining, 5–6
Desktop apps, Mac Mail, 132–134
Desktop computers, mouse-based input on, 158–159
Detail disclosure button, 48
Devil’s advocate, in sketching, 22
Dictionary, 182
Diet Coda web editor, iPad, 263–264
Digitality. See Realism vs. digitality
Dimension lines, in wireframing, 62
Dimensionality, and layout, 76–77
Disabling controls, 248
Disappearing interfaces, 248–249
Distance, layout principle of, 66
Distinction, layout principle of, 64
Division of labor

scaling back features, 228, 230
software design philosophy, 266–267

Documentation
bugs, proof-of-concept software, 121–122
characteristics of good, 210

Index306

Documentation (continued)
comprehensive, 206–207
problem-solving, 207–208
release notes, 209–210
tutorials, 208–209
in usability testing, 125

Double-taps
overview of, 152
single-taps vs., 148
zooming to 100% with, 154

Drag
creating realistic, 154–155
hysteresis and, 156
pull-to-refresh threshold in Mail using, 158
as reliable gesture, 152

Drag to Move, 156–157
Drag to Resize, 156–157
Drop shadows

communication of, 84
home screen icons with, 202
overview of, 291–293
underhighlight effect with, 105–106

E
Ease-in animation curve, 162
Ease-in/ease-out animation curve, 116, 162–163
Ease-out animation curve, 162
Edge alignment, layout, 66–67, 70
Edge cases, 233
Edit mode, as visible status, 179
Editing-oriented apps, full-screen mode on, 249
Elements

action sheets, 47
adding depth to give permanence, 291
alerts, 46–47
applying styling to. See Styling
bars, 41–43
content views, 43–46
creating paper prototypes, 113–114
standard, 41
standard controls, 48–51
titling, 172
understatement of, 71–72

The Elements of Typographic Style (Bringhurst), xxvii, 69,
74, 271–272

Email
avoid exposing underlying mechanisms of, 261
ramifications outline for, 11
reducing friction in, 260

Engineering bugs, 121
Ethos, cultivating a good reputation, 215
Experience weight, and friction, 257

F
Failed feedback, 147
Failed inputs, 146–147

Fair app pricing, 206
Fallback gestures, 154
FAQs, as problem-solving documentation, 207–208
Feature creep, Mac Mail, 132–133
Features

avoid exposing underlying mechanisms, 261
complexity vs. usefulness of, 231–232
comprehensive documentation of, 207
grouping/arranging, 243–245
iOS and, 11–12
Mac Mail, 132–134
placing usefulness, 238–239
promoting/demoting, 243–245
pruning for focused apps, 225–228
reducing problems, 12–13
scaling back for focused app, 228–230
streamlining on Mail for iPhone, 134, 138
versatile design for, 233

Feedback. See also User feedback
giving instantaneous, 147–149
keeping out of hand shadow area, 150–151
moment of uncertainty caused by lack of

immediate, 147
realistic gestures and, 154–155

Figure/ground relationship, contrast and, 89
Fill color, mockups, 102
Find My Friends app, 279, 299
Fitts’s Law, tap target sizes and, 161
Five Whys process, 197–198
Flatness vs. depth

extreme examples of, 293–296
lighting, 291–293
overview of, 290–291
tastefulness of f lat interfaces, 85

Focused apps
consolidating features, 226–227
designing, 224–225
example app, 228–230
exercises, 236
as forthcoming or quiet, 223–224
iOS love of, 225
pruning features, 225–227
real-world goals of, 225
saving feature for later, 227
scaling back features, 227–228
summary review, 236

Forgiveness, user error
confirmation, 190–191
overview of, 187
undo, 187–189

Form sheet modal view, iPad, 37
Forthcoming interface design

adjacent in space, 238–239
disappearing interfaces, 248–249
example of, 252–253
exercises, 253–254

Index 307

of focused and versatile apps, 223–224
grouping/arranging features, 242–243
hiding vs. disabling controls, 248
overview of, 237–238
paying attention to context in, 246–248
progressive disclosure, 240–241
promoting/demoting features, 243–244
quiet design vs., 237
splitting difference of features, 246
stacking in time, 239–240
summary review, 253
taps, 250
text and visual weight, 250–251

Friction
defined, 255
experience weight and, 257
how to add, 258–259
modulating app, 270
reasons to add, 257–258
slope of diff iculty curve and, 255–257
summary review, 270
unintended, 259–264

Full-screen mode, 37, 249
Functionality

adding friction for changes to, 258
complexity of design, 223–224
consolidating in focused apps, 226–227
of popover navigation, 39

G
GarageBand app

aggressive use of depth, 294–296
custom navigation scheme, 40
help overlay documentation, 208
orientation on iPhone/iPad, 78
simulation, 300–301

Gear icon, 48, 172
General preferences, Mac Mail, 132
Gestures

adding friction with more-involved, 259
exotic, 154
hysteresis of, 155–157
introducing one novel interaction per app, 280–281
keeping feedback out of hand shadow, 150–151
realistic, 154–155
sandwich problem, 153–154
six reliable, 151–153
thresholds and, 157–158

Graceful interface. See Interface, crafting graceful
Gracious interface. See Interface, crafting gracious
Gradients, 102–104, 291–293
Graphics software, sketching with, 19
Grids

measuring pixels with, 61
using 2-D layouts, 77
wireframing, 62

Grouped table views, 44, 66
Grouping

by meaning, 242–243
with usefulness stacked in time, 240

Guidance. See also Friction
among more options, 265–266
modulating app, 270
one option, 263–264
at point of need, 177–178
sensible defaults, 266–269
summary review, 270
zero options, 262–263

Guidelines, design
overview of, 271–272
using HIG. See iOS Human Interface Guidelines (HIG)

Guides
measuring pixels with, 61
testing alignment of layout with, 67–68

H
Hand shadows, 150–151
Handbook of Usability Testing (Rubin and Chisnell),

xxvii, 125
Hardware display, 56
Hardware prototypes, 114
Help overlay documentation, 208
Helvetica Neue typeface, 59, 73
Helvetica typeface, 73
Hiding

controls, 248
status bars, 41

Hierarchical navigation view
iPad, 139
Mac Mail, 133
Mail for iPhone, 135
of navigation controllers, 31–34
sketching interactions for, 26

HIG. See iOS Human Interface Guidelines
High contrast, posterization process, 97
High fidelity prototypes, 112, 118–120
Hints, coexisting with interface, 208
Horizontal slide animation, navigation controllers, 33
HSB color model

action sheet contrast, 99
brightness, 289–290
hue, 286–288
overview of, 87–88
saturation, 288–289

Hue
feelings associated with, 286
HSB color model and, 87–88
perceived brightness of, 88
using, 286–288

Human Interface Guidelines. See iOS Human Interface
Guidelines

Hysteresis, 155–157

Index308

I
iA Writer, disappearing interface of, 249
iBooks app

custom navigation scheme, 40
disappearing interface, 249
experience weight, 257
interfaces/navigation structure, 36–37
internal background, 92–93
page metadata contrast, 99
presentation of image content, 81
smart approach to brightness, 289–290
transparency of toolbar buttons, 93–94

iCab app, 223
iCloud, 227–228
Icons, conveying capability via, 199–202
Ideo Method Cards, xxviii, 8
iLife design, 278
Illustrative documentation, 210
Illustrator, as mockup tool, 86
Image resources

creating mockups using canvas, 100–101
creating mockups with Paintcode, 86
creating mockups with resizable, 107
creating Retina versions of, 107
exporting for mockup assembly, 106–107

Image Size command, 107
Images

App Store listing, 202–204
combining with cues and text, 176
for interface interaction design, 171–172
launch, 202–203
margin and padding guidelines, 70–71
measuring optically, 60
presenting, 95

Immersion, 41, 145–146
Inconvenience hand-off, scaling back features,

227–228, 230
Indeterminate progress indicator (spinny). See

Spinning indicator
Indexes, in plain table view, 44
Info button, as standard control, 48
Information density, and layout, 75
Inner bevels, 291–293
Inner shadow, 291–293
Input

creating suspension of disbelief, 145–146
failed, 146–147
improving using hysteresis, 155–157
instantaneous feedback for, 147–149
mouse-based vs. touch, 158–159
outlining, 6–8
streamlining, 261–262

Insert popover, 227
Insight, from users, 7
Inspiration, xxvi–xxviii

Instapaper app
interface adjusting for time of day, 183
novel interaction, 281
quiet presentation, 223

Interactions
cues, 169–170
design precedents for, 275
diff iculty of novel, 282–283
introducing novel, 280–281
sketches, 24–26
styling precedents, 84
suspension of disbelief in touch-based, 146
updating original, 276
usability testing for, 123–124

Interactive prototypes, 55, 112, 118–120
Interface

constraining width using page sheet, 37
creating paper prototypes, 113–114
including two in one app, 36–37
layers, 66, 74–75, 108
modal view navigation and, 37–38
orientation on iPhone, 77
paraphernalia, 238
plotting out screens, 56–57
sketches, 22–24
tastefulness, 85

Interface, crafting graceful
defined, 145
example app, 163–164
exercises, 164–165
generous taps, 158–161
hysteresis and, 155–157
instantaneous feedback in, 147–148
layout, 149–151
meaningful animation, 161–163
moment of uncertainty, 146–147
realistic gestures, 154–155
sandwich problem, 153–154
six reliable gestures, 151–153
summary review, 164
suspension of disbelief, 145–146
thresholds, 157–158
using exotic gestures as shortcuts, 154

Interface, crafting gracious
capability, 184–185
communication breakdown, 176–177
contextual status, 179–180
cues, 168–171
defensive design, 185–187
denotation and connotation, 167–168
example app, 191–193
exercises, 193–194
forgiveness, 187–191
guidance at point of need, 177–178
imagery, 171–172

Index 309

invisible status, 179–183
overview of, 167
redundant messages, 176
sense of adventure, 183–184
summary review, 193
text, 172–174
visible status, 178–179
writing, 174–176

Interior, anatomical component of an element, 90
Internal contrast, 92–93, 97
Interviews, outlining using input from, 7
Invisible status, 180–182
iOS Human Interface Guidelines (HIG)

80 percent solution for defensive design, 186
Apple developer site, 21
Apple’s icon guidelines, 200, 202
button styles within same toolbar, 42
design guidelines, 271–272
getting most out of, 272–273
iPad and iPhone tap targets, 161
iPhone tab bar limits, 23
resourcefulness, 182–183
standard controls, 48–51
standard system imagery, 172

iOS
custom controls, 52–53
elements. See Elements
exercises, 53
navigation scheme. See Navigation
overview of, 31
summary review, 53

iPad
action sheets, 47, 190–191
app icon variants, 201
designing Mail for, 138–139
drawbacks of sketching with, 19
form factor, and sketching for, 21
going cross-platform, 127
handling orientation, 78
holding techniques/layout, 149–151
modal views, 37–38
popovers, 39, 56
sketching interface for, 21–24
sketching workf low for, 26
sleek/lean apps of, 11–12
tap target sizes, 161
Undo button for apps, 171
worst-case height-compression scenario, 78–79

iPhone
action sheets, 47, 190–191
going cross-platform with, 127
handling orientation on, 78
holding techniques/layout, 149–151
icon variants, 201–202
Mail for, 134–138
Mail for iPad vs., 139

modal views, 38
Music app tab bars on, 35
navigation controller, 32–33
sketching interface for, 21–24
sleek/lean apps of, 11–12
tap target sizes, 161
worst-case height-compression scenario, 78–79

iTunes app
contextual status in, 180
localization and, 212–213
ramifications outline for, 11
specialized design of, 278

iWork apps
custom navigation scheme, 40
disabling vs. hiding undo in, 248
fallback gestures of, 154
interactive tutorial of, 208–209
precedent for browsing local documents, 275–276
redo feature in, 188
scaling back features in, 227–228
segmented-controls-as-tabs navigation in, 36
templates, 268
versatile design of, 230–231

J
Jobs, Steve, xxi, xxvi, 82, 128, 134, 138, 259, 278

K
Kaleidoscope tool, 8
Keyboards branch, navigation controller hierarchy, 32
Keynote app

animation curves in, 162–163
building wide prototype in, 120
consolidating functionality in, 227
good guidance of, 266
handling orientation on iPad, 78
interactive prototypes with, 119
prototyping animations in, 116–117
templates, 268–269
toolbar configurations, 42
versatile design using, 230–231

L
Labels

creating paper prototypes, 114
for groupings, 242
scaling back for focused app, 230
as standard controls, 48–49
text used for, 172
value 1 and 2 cells emphasizing text, 45

Lag time, realistic drag and, 154–155
Landscape orientation

on iPad, 78
on iPhone, 77–78
keeping platform in mind while sketching app, 21
page sheet modal view in, 37

Index310

Language
localizing app, 211–213
using resourcefulness for, 183
worst-case height-compression scenario, 79

Launch image, 202–204
Layer Vault tool, 8
Layers

depth styling hinting at, 291
designing for, 108
dimension lines and, 62
interface, 66, 74–75, 108
mockup assembly with, 106–107
shape, 101–102
thinking in, 74–75
transparent, 93–94
as wireframe tool, 62
Wizard of Oz prototypes in, 114–115

Layers palette, 102–104
Layout

alignment, 66–68
balance, 71
consistent design for, 274
content and controls, 74
for graceful interface, 149–151
localizing app and, 212
margin and padding, 70–71
overview of, 63
proximity and distance, 66
rhythm, 68–69
similarity and distinction, 65
understatement, 71–72
unity, 63–64
visual weight, 64–65

Left detail (value 2 cells) style, 45, 51
Letterpress app, as f lattened, 294
Life-improving software, iOS, 197
Lighting effects, and depth, 291–293
Linear animation curves, 162–163
Linguistic gimmicks, avoiding in localization, 212
Links, consistent design for, 274
Lion, Mail on, 140–141
LiveView, for interactive prototypes, 119
Localization, 183, 211–213
Location Services, respecting user data, 216
Logos, 84, 287–288
Loudness, with text/visual weight, 250–251
Low fidelity prototypes

defined, 112
interactive prototypes as, 118–120
paper prototypes as, 112–114

M
Mac

designing Mail for, 140–141
going cross-platform with, 128
specialized design of, 278

Mac OS X Leopard, and Mail, 131–134, 137
Mail app

1.5-D message list in, 76
adaptation of, 180–181
depth cues in, 291
guidance at point of need in, 178
handling orientation on iPhone, 78
learning of, 182
paying attention to context in, 247
pull-to-refresh threshold in, 158
split view navigation, 33–34
text used for unread messages on, 172
undo feature in, 188
using page sheet modal view, 37

Mail app, case study
back to the Mac, 140–141
implementing on different platforms, 131
iPad, 138–139
iPhone, 134–138
Mac OS X Leopard, 131–134

Maps app
detail disclosure button on iPhone, 48
double-tap in, 152
navigation on iPhone, 33
rotate in, 153
sandwich problem of, 153–154

Margins, as layout principle, 70–71
Marketing

creating preemptive demo videos for, 118
evaluating proof-of-concept software for bugs, 122
of iOS gestures, 153

Master/detail approach, with workf low sketches, 26
Matte surface, mockups, 105
Meaning, grouping by, 242–243
Meaningful animation, 161–163
Measurement, 58–61
Medium contrast, in posterization, 97
Mental model, 40–41
Mental sweep, outlining using, 6–7
Menus, Mac Mail, 133–134
Message list screen, Mail for iPhone, 136
Messages

redundant, 176
rewriting, 175
writing text, 174–176

Messages app, conscientious divergence of design in,
280

Metaphors, mimicking real objects, 297–298
Mini apps, 129–130
Mission statement, App Store listing, 204
Mobile platforms, going cross-platform, 128
Mockups

assembly, 106–107
backgrounds, 92–93
color for, 86–88
color vs. monochrome, 286–290

Index 311

contrast, 89–92
contrast, evaluating with posterize, 95–97
contrast, examples, 97–99
creating button, 100–106
designing for layers, 108
exercises, 109
overview of, 81
pixels and, 57
presenting image content, 95
resizable images, 107
retina resources, 107–108
sketches vs., 19
styling, 82–85
summary review, 109
tools for, 85–86
transparency, 93–94
value, 88–89
when to create, 81–82
when to skip, 82

Modal views
context and, 248
manually undoing interactions, 189
for motion sketches, 115
presenting, 37–38

Modes
hues for, 286
as visible status, 179

Modular scale, 69
Monochrome, color vs., 286–290
Motion sketches, 112, 115–118
Mouse-based input, vs. touch, 158–159
Multiple personalities, 36–37
Multiple-user support, rarely offered in iOS, 12–13
Multithreading, contextual status and, 180
Music app, iPhone

presenting image content, 95
tab bar, 29, 35–36
volume knob lighting, 292

Mystery meat navigation, 172

N
Naming

apps, 199
groupings, 242

Navigable documentation, 210
Navigation

customizing, 39–41
modal view, 37–38
of multiple interfaces in one app, 36–37
mystery meat, 172
navigation controllers, 31–34
overview of, 31
popovers, 39
segmented-controls-as-tabs, 36–37
split view, 34–35
tab bar, 35–36

with table cells/detail disclosure buttons, 50
with table views, 43

Navigation bar, 31–32, 42, 279
Navigation controllers

consistent design for, 274
creating motion sketches, 115
overview of, 31–34
tab bar navigation vs., 36

Negative feedback, 147
Negotiation bugs, 122
Network activity indicator, 49
Nextstep operating system, Mail on Leopard, 131–132
Night theme, iBooks, 290
No-hand holding, for iPhone/iPad, 150
Noise layer, for matte surface, 105
Norman, Donald

on affordances, 170
on behavioral level of cognition, 167
on ref lective level of cognition, 195–196
on visceral level of cognition, 145

Notations
adding to screenshots in App Store, 204
denotation vs. connotation, 167–168
using Remarks app for, 19

Notes app
replicating office supplies, 298
streamlining input, 261
using architecture sketches for, 20

Notifications
betrayal of user trust, 216–218
respecting user time/attention, 215–216
subtitle cells of Settings app screen, 45

Novel interactions, 280–283
Number pads, 163–164
Numbers app, 230–231, 268
Numerical settings, with stepper, 51

O
OmniFocus app, 186
OmniGraff le app, 19, 119
On-screen controls, sketching interfaces, 22–24
One-handed holding, iPhone layout for, 149–150
One not many, scaling features, 227, 230
One option, guiding user with, 264–266
Online resources

accessibility, 215
quiet vs. forthcoming presentations, 223–224
registering this book for reader services, xxxiii
web site for this book, xxv

Opacity, 103–104
Optical measurements, wireframes, 58–61
Orientation

sketching app with platform in mind, 21
wireframing iPhone/iPad, 77–78
worst-case height-compression scenario, 78–79

Ornamentation, 298–299

Index312

Outlines
antirequirements, 9–10
architecture, 13
avoid exposing underlying mechanism, 261
defining platform, 10–11
as to-do list, 14
exercises, 14
exploring design ideas with, 15
features and, 11–12
listing ramifications, 11
mental sweep before beginning, 6–7
more inputs to, 7–8
nonlinear but orderly process of, 3–4
overview of, 3
problem reduction, 12–13
requirements, 8–9
software design with, 4–6
starting new platform with, 130

P
Padding, as layout principle, 70–71
Page indicator, 49
Page metadata contrast, iBooks, 99
Page sheet style, modal view, 37
Pages app

borrowing materials from real world, 297
complexity on Mac vs. iPad, 231–232
presets, 269
templates, 268
versatile design of, 223, 230–231

Paintcode tool, mockups, 86
Paper app, 18–19, 281
Paper prototypes, 112–114
Partial curl transition style, iPhone, 38
Pathways, workf low sketch, 26–29
Pattern recognition, versatile apps, 235
Patterns, of good backgrounds, 93
Penultimate app, writing/sketching, 19
Perceived brightness (values), 88–89, 95–97
Permanence, 291, 297
Photos, 81, 249
Photoshop

converting image resources to Retina, 107–108
creating custom button, 100–106
mockup assembly in, 85, 106–107

Picker control, 49, 52–53
Pinch/unpinch

getting out of sync with fingers, 155
hysteresis and, 157
pitfalls of thresholds, 158
sandwich problem in Maps app and, 153–154
zoom in/out with, 152–153

Pixelmator tool, mockups, 86
Pixels

adding bevel, 104
and grids, 62

measuring, 58–61
and points, 57–58

Placeholder text, 51, 178
Plain apps. See Aesthetics (rich and plain)
Plain table view, 43–44
Plain text f iles, for software design, 5
Platform definition outline, 10–11
Platforms

creating new sketches based on precedents, 22
going cross-platform. See Cross-platform
keeping in mind while sketching app, 21

Podcast screens, navigation controllers for, 33
Points

tap targets and, 158–161
using scale for margins, 70
using scale for rhythm, 68–69
wireframing iOS displays in, 57–58
worst-case height-compression scenario, 79

Popovers
hues for, 286
on iPad screens, 56
modal views vs., 38
navigating, 36, 39
paying attention to context with, 246–247
styling for communication, 84
tips for, 43
undo feature and, 188
workf low sketches of, 26

Portrait orientation
on iPad, 78
on iPhone, 77–78
keeping in mind while sketching app, 21
page sheet modal view in, 37
split-view navigation and, 33–34
worst-case height-compression scenario, 79

Posterization process, 95–98
PowerPoint, 266
Powers of 10, instantaneous feedback, 149
Precedents, 21–22, 275–276
Preemptive demo videos, 112, 117–118
Preferences, Mail, 132–135
Premium app pricing, 205–206
Presentation

functional complexity of. See Versatile apps
functional simplicity of. See Focused apps
simplicity vs. complexity of. See

Forthcoming interface design;
Quiet interface design

Presets, 228, 230, 268–269
Previews of content, navigation controllers, 33–34
Pricing, app, 205–206
Priorities, bug reporting, 122–123
Problem reduction outlines, 12–13
Problem-solving documentation, 207–208
Productivity apps, 41
Programmer’s colors, and saturation, 288–289

Index 313

Progress indicators. See also Spinning indicator
quietness of spinnies vs., 251
for response of more than three seconds, 148
threshold for, 148

Progress view, as standard control, 49–50
Progressive disclosure experience, in iOS, 240–241
Project management software, outlining using, 5
Promoting features, 243–245
Proof-of-concept software, 112, 121–123
Prototypes

exercises, 126
interactive, 118–120
kinds of, 112
motion sketches as, 115–117
overview of, 111
paper, 112–114
preemptive demo videos, 117–118
proof-of-concept software, 121–123
sketches vs., 19
summary review, 126
testing, 111–112, 123–126
Wizard of Oz, 114–115

Proximity, layout principle of, 66
Pull-to-refresh

cargo cult design example, 277
as successful novel interaction, 281
threshold example, 157–158

Q
Quiet interface design

adjacent in space, 238–239
disappearing interfaces, 248–249
example of, 251–252
exercises, 253–254
of focused and versatile apps, 223–224
forthcoming design vs., 237
grouping/arranging in, 242–243
hiding vs. disabling controls, 248
overview of, 237–238
paying attention to context, 246–248
progressive disclosure, 240–241
promoting/demoting features, 243–244
splitting difference of features, 246
stacking in time, 239–240
summary review, 253
taps, 250
text and visual weight, 250–251

R
Ramifications outline, 11
Read-only, scaling back features, 228, 230
Real-world goals, focused apps, 225
Real-world objects. See Skeuomorphic design
Real-world textures, 92–93
Realism vs. digitality

metaphor, 297–298

ornamentation, 298–299
overview of, 296–297
simulation, 299–301
taking it easy, 301
texture and tactility, 297

Realistic gestures, 154–155
Reassurance, of elements adjacent in space, 238
Records, user feedback, 8
Redo feature, 188
Redundant messages, 176
Ref lective level of cognition

judging app quality, 124
overview of, 195–196

Rejected (dead-end) ideas, 6, 17
Release notes, 209–210
Reliable gestures, 151–153
Remarks app, writing/sketching tool, 19
Rendering, as styling attribute, 83
Requirements outline

creating, 8–9
creating interface sketch from, 23
starting new platform using, 129

Resizable images, mockups, 107
Resourcefulness, 181–182
Resources

focused vs. versatile apps, 225
helpful, xxvii–xxviii
versatile app requirements, 233

Respect, establishing user, 215–219
Retina resolutions

converting image resources to, 107–108
Helvetica Neue typeface on, 73
points in, 57

Rewriting messages, 175
RGB colorspace, 86–88
Rhythm, as layout principle, 68–69
Rich apps. See Aesthetics (rich and plain)
Right detail (value 1 cells) style, 45, 51
Rotate, performing gesture, 153
Rounded rectangle button, as standard control, 50
Rubber ducking, 17–18
Ruler objects, measuring pixels, 61

S
Safari, tap targets in, 160
Safety mechanism, custom controls, 187
Saturation

HSB color model and, 87–88
using, 288–289
visual weight and, 91

Saving work, 262
Scale

basic, 68–69
modular, 69

Scale Styles setting, 107
Scaling back features in focused apps, 227–228, 230

Index314

Scope bar, as standard control, 50
Scope, choosing app, 224–225
Screens

elements adjacent in space on single, 238–239
elements as building blocks of. See Elements
manual undo and, 189
mockup assembly and, 106–107
navigating. See Navigation
for paper prototypes, 113–114
tab bar dominance on, 36
thinking in terms of, 55–57
for Wizard of Oz prototypes, 114–115
workf low sketches of paths between, 26–29

Screenshot Journal app, 60
Screenshots, 81–82, 204
Scrolling, 74–75, 79
Search bar, as standard control, 50
Section headers, plain table view, 44
Security, respecting user data, 216
Segmented controls, 50
Segmented-controls-as-tabs, 36–37
Selection, as visible status, 178–179
Self-guided tour, of your app, 240–241
Semiotic engineering, 169
The Semiotic Engineering of Human-Computer Interaction

(de Souza), 169
Sensible defaults, 265–269
Sepia theme, iBooks, 289–290
Service, customer, 211
Settings app

gear imagery for, 171
grouped table view in, 44, 66
subtitle cell style for Notifications screen of, 45
value 1 cells for, 45

Settings-like split view navigation, 33–34
Shading, 58–59, 62–63
Shake to Undo gesture, 188
Shape layer, creating custom buttons, 101–102
Shine effect, app icons, 202
Shortcuts, 27–29, 154
Shorthand, using precedents, 276
Signatures, Mac Mail, 132
Signup experience, reducing friction in, 260–261
Silence, in failed feedback, 147
Similarity, layout principle of, 64
Simulation, of real-world objects, 299–301
Single-taps, 148
Size, visual weight and, 64–65
Sketching

creating paper prototypes, 114
creating versatile app, 233–235
creating Wizard of Oz prototypes, 114–115
exercises, 29
exploring design ideas with, 15
interactions, 24–26

interfaces, 22–24
playing devil’s advocate using, 22
rubber ducking and, 17–18
situations for, 20–21
sketchiness of, 19–20
summary review, 29
thinking by, 15–16
through conversation, 16–18
tools for, 18–19
using precedents, 21–22
wireframes vs., 55–56
workf lows, 26–29

Sketching User Experiences (Buxton), xxvii, 15
Skeuomorphic design

metaphors, 297–298
ornamentation, 298–299
overview of, 301
simulation, 299–301
taking it easy, 301
texture and tactility, 297

Skeuomorphism, 301
Skinner, B.F., 183
Skinning standard controls, harmless distinctiveness,

279
Slicy app, 106–107, 202–203
Slide to unlock, adding friction with, 259
Slider, as standard control, 51
SnackLog sample app

Five Whys and, 197–198
as focused app, 228–230
introduction to, 8–9
making forthcoming, 252–253
making graceful, 163–164
making gracious, 191–193
making quiet, 251–252

Specialized design
conscientious divergence in, 279–280
consistency vs., 271–272
diff iculty of novelty, 282–283
exercises, 284
getting the most of HIG, 272–273
harmless distinctiveness in, 279
how it all works out, 271–272
one novel interaction per app, 280–281
overview of, 278

Spinning indicator
progress indicators vs. quietness of, 251
pull-to-refresh in Mail using, 158
for response of more than three seconds, 148
threshold for, 148

Split view
as content view, 43
current context modal view in, 38
presenting navigation with, 34–35

Stacked in time, 237, 239–240

Index 315

Standalone apps, 129–130
Standard controls

custom controls based on, 52
customizing appearance with tints, 279
types of, 48–51

Standard resolution, 57, 100
Status

contextual, 179–180
invisible, 180–182
visible, 178–179

Status bar
network activity indicator in, 49
showing content/controls, 41
worst-case height-compression scenario, 79

Steering wheel zone, iPad layout, 149–150
Stencil tools, wireframes, 62
Stepper control, numerical settings, 51
Steps, adding friction with more, 259
Stocks app, 20
Stretchable images, mockups, 107
Strings, localizing app, 212
Stroke, mockups, 103–104
Styling

backgrounds, 92–93
color, 86–88
for communication, 84
with consistency. See Consistent design
with contrast, 89, 95–97
as design discipline, 82–83
for good contrast and visual weight, 89–92
image content, 95
in layers, 108
rendering and, 83
specialized. See Specialized design
tastefulness and, 84–85
transparency, 93–94
value and, 88–89
wireframes, 62–63

Subtitle cells, as content view, 45
Support, designing for user, 211
Surface, adding matte to, 105
Suspension of disbelief

breaking, 146
instantaneous feedback preserving, 148–149
iOS devices preserving, 145–146
moment of uncertainty, 146–147

Sustainable app pricing, 205
Swipe gesture, 152
Swipe-to-delete convention, 152
Switches

consistent design for, 274
manually undoing interactions, 189
as standard control, 51
toggling setting on/off, 50

T
Tab bar

showing content/controls, 42–43
top-level navigation with, 35–36
workf low sketches of, 26

Table cells
consistent design for, 274
contrast in, 98
generous tap targets for, 159–161
Mail for iPhone using, 136
with text input, 51

Table view
choosing options in, 50
contrast in, 98
information displayed in, 43
Mail for iPhone using, 135, 136
navigation controller options, 33
picker vs., 49
styling for contrast, 91

Tactility, borrowing materials from real world, 297
Taps

ease of using, 250
forgiving accidental/exploratory, 259
hysteresis and, 156
instantaneous feedback of, 148–149, 154–155
as most reliable gesture, 152
navigation controllers using, 33
sketching interactions for, 26
targets for, 158–161

Target audience
accessing for outlining, 7–8
usability testing with, 124–126

Tasks, outlining, 5
Tastefulness, as styling attribute, 84–85
Templates, 62, 268
Terminology, designing features using, 13
Testing

prototype animations, 117
prototypes on device, 111–112
usability of prototypes, 123–126
using hysteresis to improve, 157
VoiceOver, 214

Text
aligning in layout, 67
combining with cues/imagery, 176
demanding attention/requiring reading, 174
depth styling for legibility, 291
giving loudness and clarity to, 250–251
in interface interaction design, 172–174
label, 45, 48–49
margin and padding guidelines, 70–71
measuring optically, 59
principles of typography, 73–74
understated layout for, 72

Index316

Text fields, 51
Text view, 46
Texture, 105, 297
Themes, iBooks, 289–290
Thinking, Fast and Slow (Kahneman), xxviii, 238
Thinking with Type (Lupton), 74
Thresholds, in graceful interface, 157–158
Thumb field, iPhone layout, 149–150
Time, user

elements adjacent in space saving, 238
precedents saving, 276
respecting, 215–218

Timing, iOS animations, 116
Tints, customizing app, 279
To-do applications, tasks in, 5
To-do lists, outlines as, 14
Toolbar buttons

bordered/unbordered, 42
center alignment of borderless, 67
iBooks transparent, 93–94
iPhone Mail commands, 136
margin and padding, 70

Toolbars
customizing with tints, 279
safe hues for, 286–287
showing content/controls, 42

Tools
graphics, 85–86
prototyping, 118–119
sketching, 18–19

Touch and hold, 152
Toyota, Five Whys process, 197–198
Track 8 music app, 294
Traditional outlines, 5
Transitions, iPhone, 38
Transparency, mockups and, 93–94
Trends, design, 272
Triangulation, versatile app design, 233–235
Trust, respecting user, 215–219
Tutorials, introducing interface via, 208–209
Tweetbot, Use Last Photo Taken button, 265–266
Tweetie, 157–158, 277, 281
Two-handed holding, iPhone/iPad, 150
Typography

Apple points vs. points in, 57–58
page sheet modal view and, 37
principles of, 73–74

U
UI furniture, 239, 248–249
UIPrerenderedIcon shine effect, 202
Unbordered buttons, toolbars, 42
Underlying mechanisms, 261
Underhighlights, 105–106, 291–293
Understatement, 71–72, 84–85

Undo feature
arrow buttons, 171
disabling vs. hiding in iWork, 248
overview of, 187–188
prominence of, 243

Unicode character set, 73, 211–213
Unintended friction, 259–264
Unitaskers, 225
Unity, layout, 63–64
Updating sketches, as you go, 18
Usability testing, 123–126
Use cases

defined, 121–122
starting new platform, 130
versatile app design, 233–236

User experience design
accessibility, 213–215
conveying capability, 198–206
documentation, 206–210
ethos, 215
exercises, 219
following precedents to save effort, 276
localization, 211–213
overview of, 195–196
respect, 215–219
serving the soul, 197–198
summary review, 219
support, 211

User feedback
keeping records of, 8
often-requested features vs. antirequirements, 10
in usability testing, 126, 208

User Interface Design Labs, 273
Users

accessing for outlines, 7–8
betrayal of trust, 216–218
guessing intentions using hysteresis, 157
sketching interactions, 26
use of term in this book, 218–219

V
Value 1 cells (right detail) style, 45, 51
Value 2 cells (left detail) style, 45, 51
Value bar, 163–164
Values (perceived brightness)

contrast and, 89
overview of, 88–89

Vectors, defining shape layer, 102
Versatile apps

bringing own goals to, 231
creating, 233
designing, 230–231
exercises, 236
finding boundaries, 235–236
as forthcoming or quiet, 223–224

Index 317

iOS love of versatility, 231–232
pattern recognition for, 235
resources required for, 233
summary review, 236
using triangulation, 233–235

Version control, for design resources, 8
Versions tool, by Black Pixel, 8
Videos, preemptive demo, 117–118
Visceral level of cognition

crafting graceful interface. See Interface, crafting
graceful

defined, 145
judging app quality at, 124

Visible status, interface interaction design, 178–179
Visual cues, 259
Visual rhythm, layout, 68–69
Visual weight

adding friction by increasing, 259–260
adjusting for balance, 71
adjusting for contrast, 89–92
giving loudness and clarity, 250–251
as layout principle, 64–65
using hue for, 287

VoiceOver, for accessibility, 214
Volume slider, 51

W
W3C (World Wide Web Consortium), 89
Wait indicator threshold, 148
Warning cues, 259
Weather app

adjusting for time of day, 183
focused design of, 223
status images of, 171

Web, going cross-platform with, 128–129
Web service, sketching interactions for, 26
Web view, 46
 “What’s New,” App Store, 209–210
Wheels of time, 48–49
White theme, iBooks, 289–290
Whiteboards, 5, 16–18
Wide prototypes, 119–120
Widget-type apps, starting out, 20

Widths, 37, 76
Windows, cross-platform with, 128
Wireframes

content and controls layout, 75
controls in content areas, 75
dimensionality, 76–77
exercises, 80
in graceful interface layout, 149–151
information density, 75
layout principles. See Layout
optical measurements, 58–61
orientation on iPad, 78
orientation on iPhone, 77–78
sketches vs., 55–56
summary review, 79
for tab bars, 42–43
thinking in layers, 75–76
thinking in points, 57–58
thinking in screens, 55–57
tools, 61–63
typography, 72–74
in Wizard of Oz prototypes, 114–115
worst-case height-compression scenario, 78–79

Wizard of Oz prototypes, 112, 114–115
Workf low sketches, 26–29
World Wide Web Consortium (W3C), 89
Worldwide Developers Conference, Apple, 273
Wrench icon, 48
Writing

about software, 4–6
interface interaction with good, 174–176

X
Xcode, 61, 70
xScope app, 61, 101, 108, 115

Z
Z dimension, 74
Zero options, 262–263
Zoom in

measuring pixels with, 60
pinch/unpinch for. See Pinch/unpinch
two-fingered double tap for, 154

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	3 Getting Familiar with iOS
	Navigation: Screen to Screen
	Advice on the Standard Elements
	Custom Controls
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

